Skip to main content
Log in

Steady State Analysis of Finite Fluid Flow Models Using Finite QBDs

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

The Markov modulated fluid model with finite buffer of size β is analyzed using a stochastic discretization yielding a sequence of finite waiting room queueing models with iid amounts of work distributed as exp (nλ). The n-th approximating queue’s system size is bounded at a value q n such that the corresponding expected amount of work qn/(nλ) → β as n → ∞. We demonstrate that as n → ∞, we obtain the exact performance results for the finite buffer fluid model from the processes of work in the system for these queues. The necessary (strong) limit theorems are proven for both transient and steady state results. Algorithms for steady state results are developed fully and illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Ahn and V. Ramaswami,Fluid flow models & queues—A connection by stochastic coupling, Stochastic Models 19(3) (2003) 325–348.

    Article  Google Scholar 

  2. S. Ahn and V. Ramaswami, Transient analysis of fluid flow models via stochastic coupling to a queue, 2003, Stochastic Models 20(1) (2004) 71–101.

    Google Scholar 

  3. D. Anick, D. Mitra and M.M. Sondhi, Stochastic theory of a data handling system with multiple sources, Bell Syst. Tech. J. 61 (1982) 1871–1894.

    Google Scholar 

  4. E. Çinlar, Introduction to Stochastic Processes (Prentice Hall, Englewood Cliffs, New Jersey, 1975).

    Google Scholar 

  5. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (Mc-Graw Hill, New York, 1955).

    Google Scholar 

  6. B. Hajek, Birth-and-Death processes on the integers with phases and general boundaries, J. Appl. Prob. 19 (1982) 488–499.

    Google Scholar 

  7. S. Halfin and W. Whitt, Heavy-traffic limits for queues with many exponential servers, Operations Research 29 (1981) 567–588.

    Google Scholar 

  8. G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling (SIAM & ASA, Philadelphia, 1999).

    Google Scholar 

  9. M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models, An Algorithmic Approach (The Johns Hopkins University Press, Baltimore, MD, 1981).

    Google Scholar 

  10. B.F. Nielsen and V. Ramaswami, A computational framework for quasi birth and death processes with a continuous phase variable, in: Teletraffic Contributions for the Information Age: Proc. of the 15th International Teletraffic Congress, eds, V. Ramaswami and P.E. Wirth (Elsevier, 1997) pp. 477–486.

  11. V. Ramaswami, Matrix analytic methods for stochastic fluid flows, in Teletraffic Engineering in a Competitive World—Proc. of the 16th International Teletraffic Congress, eds. D. Smith and P. Key (Elsevier, 1999) pp. 1019–1030.

  12. A.V. Skorohod, Limit theorems for stochastic processes, Theor. of Probability Appl. 1 (1956) 261–290. (Republished also in Skorohod’s Ideas in Probability Theory, eds. V. Korolyuk, N. Portenko and H. Syta (Institute of Mathematics of the National Academy of Sciences of the Ukraine, Kyiv, Ukraine, 2000) pp. 23–52.

    Article  Google Scholar 

  13. A. da Silva Soares and G. Latouche, Matrix-analytic methods for fluid queues with finite buffers, Technical Report TR-509, Universite Libre de Bruxelles, Belgium, 2003.

  14. R.L. Tweedie, Operator-geometric stationary distributions for Markov chains with application to queueing models, Adv. Appl. Prob. 14 (1982) 369–391.

    Google Scholar 

  15. W. Whitt, Stochastic Process Limits—An Introduction to Stochastic-Process Limits and their Application to Queues (Springer, 2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

AMS subject classification: 60J25, 60K25, 60K15, 60K37

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, S., Jeon, J. & Ramaswami, V. Steady State Analysis of Finite Fluid Flow Models Using Finite QBDs. Queueing Syst 49, 223–259 (2005). https://doi.org/10.1007/s11134-005-6966-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-005-6966-9

Keywords

Navigation