Skip to main content

Advertisement

Log in

Therapeutic Effect of Desmodium caudatum Extracts on Alleviating Diabetic Nephropathy Mice

  • Research
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-β1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-β1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The experimental data are included in the manuscript and are available from the corresponding author upon request.

References

  1. Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade-Sierra J (2016) Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res 2016:7047238. https://doi.org/10.1155/2016/7047238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeni L, Norden AGW, Cancarini G, Unwin RJ (2017) A more tubulocentric view of diabetic kidney disease. J Nephrol 30(6):701–717. https://doi.org/10.1007/s40620-017-0423-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tuleta I, Frangogiannis NG (2021) Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 1867(4):166044. https://doi.org/10.1016/j.bbadis.2020.166044

    Article  CAS  PubMed  Google Scholar 

  4. Hung PH, Hsu YC, Chen TH, Lin CL (2021) Recent advances in diabetic kidney diseases: from kidney injury to kidney fibrosis. Int J Mol Sci 22(21):11857. https://doi.org/10.3390/ijms222111857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48

    Article  CAS  PubMed  Google Scholar 

  6. Zeng LF, Xiao Y, Sun L (2019) A Glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy. Adv Exp Med Biol 1165:49–79. https://doi.org/10.1007/978-981-13-8871-2_4

    Article  CAS  PubMed  Google Scholar 

  7. Kwon H, Pessin JE (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol 12(4):71. https://doi.org/10.3389/fendo.2013.00071. (Lausanne)

    Article  Google Scholar 

  8. Wang Y, Fan X, Qu H, Gao X, Cheng Y (2012) Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr Top Med Chem 12(12):1356–1362. https://doi.org/10.2174/156802612801319034

    Article  CAS  PubMed  Google Scholar 

  9. Zhong Y, Menon MC, Deng Y, Chen Y, He JC (2015) Recent advances in traditional Chinese medicine for kidney disease. Am J Kidney Dis 66(3):513–522. https://doi.org/10.1053/j.ajkd.2015.04.013

    Article  PubMed  Google Scholar 

  10. Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W (2024) Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 170:116039. https://doi.org/10.1016/j.biopha.2023.116039

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Lin X, Tang G, Li R, Wang D, Ji S (2019) Pharmacognostical study of Desmodium caudatum. An Acad Bras Cienc 91(2). https://doi.org/10.1590/0001-3765201920180637

  12. Li W, Sun YN, Yan XT, Yang SY, Kim S, Chae D, Hyun JW, Kang HK, Koh YS, Kim YH (2014) Anti-inflammatory and antioxidant activities of phenolic compounds from Desmodium caudatum leaves and stems. Arch Pharm Res 37(6):721–727. https://doi.org/10.1007/s12272-013-0241-0

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki H, Kashiwada Y, Shibata H, Takaishi Y (2012) Prenylated flavonoids from Desmodium caudatum and evaluation of their anti-MRSA activity. Phytochemistry 82:136–142. https://doi.org/10.1016/j.phytochem.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  14. Guo J, Feng X, Zhou S, Yan W, Meng D (2016) Potential anti-Alzheimer’s disease activities of the roots of Desmodium caudatum. Ind Crops Prod 90:94–99. https://doi.org/10.1016/j.indcrop.2016.06.018

    Article  CAS  Google Scholar 

  15. Xu QN, Zhu D, Wang GH, Lin T, Sun CL, Ding R, Tian WJ, Chen HF (2021) Phenolic glycosides and flavonoids with antioxidant and anticancer activities from Desmodium caudatum. Nat Prod Res 35(22):4534–4541. https://doi.org/10.1080/14786419.2020.1739044

    Article  CAS  PubMed  Google Scholar 

  16. Ma KJ, Zhu ZZ, Yu CH, Zhang H, Liu J, Qin LP (2011) Analgesic, anti-inflammatory, and antipyretic activities of the ethanol extract from Desmodium caudatum. Pharm Biol 49(4):403–407. https://doi.org/10.3109/13880209.2010.520322

    Article  PubMed  Google Scholar 

  17. Sagoo MK, Gnudi L (2020) Diabetic nephropathy: an overview. Methods Mol Biol 2067:3–7. https://doi.org/10.1007/978-1-4939-9841-8_1

    Article  CAS  PubMed  Google Scholar 

  18. Zheng W et al (2021) Fuxin Granules ameliorate diabetic nephropathy in db/db mice through TGF-β1/Smad and VEGF/VEGFR2 signaling pathways. Biomed Pharmacother 141:111806. https://doi.org/10.1016/j.biopha.2021.111806

    Article  CAS  PubMed  Google Scholar 

  19. Li Y et al (2021) Alleviative effects of 20(R)-Rg3 on HFD/STZ-induced diabetic nephropathy via MAPK/NF-κB signaling pathways in C57BL/6 mice. J Ethnopharmacol 1(267):113500. https://doi.org/10.1016/j.jep.2020.113500

    Article  CAS  Google Scholar 

  20. Gotto AM Jr (2003) Safety and statin therapy: reconsidering the risks and benefits. Arch Intern ed 163(6):657–9. https://doi.org/10.1001/archinte.163.6.657

    Article  Google Scholar 

  21. Shen X, Zhang Z, Zhang X, Zhao J, Zhou X, Xu Q, Shang H, Dong J, Liao L (2016) Efficacy of statins in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids Health Dis 15(1):179. https://doi.org/10.1186/s12944-016-0350-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GS, Hoyte C (2019) Review of biguanide (metformin) toxicity. J Intensive Care Med 34(11–12):863–876. https://doi.org/10.1177/0885066618793385

    Article  PubMed  Google Scholar 

  23. Lv W, Booz GW, Fan F, Wang Y, Roman RJ (2018) Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies. Front Physiol 16(9):105. https://doi.org/10.3389/fphys.2018.00105

    Article  Google Scholar 

  24. Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY (2022) TGF-β/Smad signaling pathway in tubulointerstitial fibrosis. Front Pharmacol 13:860588. https://doi.org/10.3389/fphar.2022.860588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Dawla NMQ, Sallam AM, El-Hefnawy MH, El-Mesallamy HO (2019) E-cadherin and periostin in early detection and progression of diabetic nephropathy: epithelial-to-mesenchymal transition. Clin Exp Nephrol 23(8):1050–1057. https://doi.org/10.1007/s10157-019-01744-3

    Article  CAS  PubMed  Google Scholar 

  26. Ali H, Abu-Farha M, Hammad MM, Devarajan S, Bahbahani Y, Al-Khairi I, Cherian P, Alsairafi Z, Vijayan V, Al-Mulla F, Attar AA, Abubaker J (2022) Potential role of N-cadherin in diagnosis and prognosis of diabetic nephropathy. Front Endocrinol 13:882700. https://doi.org/10.3389/fendo.2022.882700. (Lausanne)

    Article  Google Scholar 

  27. Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function–role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110(1):87–94. https://doi.org/10.1111/j.1742-7843.2011.00785.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Science and Technology Council, Taiwan (NSTC110-2320-B040-015).

Author information

Authors and Affiliations

Authors

Contributions

J.-H.C. and H.-H.L. designed research; C.-Y.T. and H.-Y.H. performed experiments; C.-Y.T., P.-R.Y. and C.-C.H. analyzed data; C.-Y.T. and J.-H.C. wrote the manuscript; All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Jing-Hsien Chen.

Ethics declarations

Ethical Approval

The animal experiments were approved by the Chung Shan Medical University Animal Care Committee (IACUC: approval number: 2426).

Consent for Publication

All authors declare no conflict of interest.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2913 KB)

Supplementary file2 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HH., Tseng, CY., Yu, PR. et al. Therapeutic Effect of Desmodium caudatum Extracts on Alleviating Diabetic Nephropathy Mice. Plant Foods Hum Nutr (2024). https://doi.org/10.1007/s11130-024-01192-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11130-024-01192-9

Keywords

Navigation