Skip to main content
Log in

The Effect of Light in Vitamin C Metabolism Regulation and Accumulation in Mung Bean (Vigna radiata) Germination

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Vitamin C, as an essential vitamin for humans, has important physiological functions, such as antioxidants and enzyme cofactors. Mung bean sprouts are a good source of vitamin C and light is an essential impact factor of vitamin C content during germination. This study focused on the kinetic changes and metabolic regulation mechanism of vitamin C during mung bean sprouting under three-light treatment including constant light (24 h light/0 h dark), semi-light (12 h light/12 h dark) and constant dark (0 h light/24 h dark). Results confirmed that vitamin C content increased with the raised of light time during germination. The highest level of vitamin C, appeared on three days after constant light treatment (3-DALT), was 78 - fold higher than the initial concentration. L-ascorbic acid content on 3-DALT of mung bean sprouts was 21.4 and 29.8 times higher compared to the value on day 3 with semi -light treatment and constant dark treatment, respectively. Additionally, PMI, GME, GLDH, GalUR and DHAR expressions had strong correlations with L-ascorbic acid and vitamin C responding to light. Results indicated that light had an intimate correlation with the component and biosynthesis of vitamin C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASA:

Ascorbic acid

DADT:

Days after constant dark treatment

DALT:

Days after constant light treatment

DAST:

Days after semi-light treatment

DHA:

Dehydroascorbic acid

DHAR:

Dehydroascorbic acid reductase

GLDH:

L-galactonolactone dehydrogenase

GME:

GDP-mannose 3,5-epimerase

HAI:

Hours after imbibition

PMI:

Mannose-6-phosphate isomerase

RDA:

Recommended dietary allowance

ROS:

Reactive oxygen species

DT:

Dark treatment

LT:

Light treatment

ST:

Semi-light treatment

VC:

Vitamin C

References

  1. Bartoli CG, Gomez F, Fernandez L, Foyer CH (2004) Regulation of ascorbic acid synthesis in plants. Free Radic Biol Med 36:S127–S127. https://doi.org/10.4161/psb.24536

    Article  Google Scholar 

  2. USDA (2015–2020). Dietary Guidelines for Americans, https://www.dietaryguidelines.gov.

  3. Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR (2015) Mung bean: technological and nutritional potential. Crit Rev Food Sci 55:670–688. https://doi.org/10.1080/10408398.2012.671202

    Article  CAS  Google Scholar 

  4. Perales-Sanchez JXK, Reyes-Moreno C, Gomez-Favela MA, Milan-Carrillo J, Cuevas-Rodriguez E, Valdez-Ortiz A et al. (2014) Increasing the antioxidant activity, Total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum Nutr 69:196–202. https://doi.org/10.1007/s11130-014-0430-0

    Article  Google Scholar 

  5. Baiano A, Del Nobile MA (2016) Antioxidant compounds from vegetable matrices: biosynthesis, occurrence, and extraction systems. Crit Rev Food Sci Nutr 56:2053–2068. https://doi.org/10.1080/10408398.2013.812059

    Article  Google Scholar 

  6. Guo XB, Li T, Tang KX, Liu RH (2012) Effect of germination on phytochemical profiles and antioxidant activity of Mung bean sprouts (Vigna radiata). J Agric Food Chem 60:11050–11055. https://doi.org/10.1021/jf304443u

    Article  CAS  PubMed  Google Scholar 

  7. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689. https://doi.org/10.1111/j.1365-313X.2007.03266.x

    Article  CAS  PubMed  Google Scholar 

  8. Ntagkas N, Woltering EJ, Marcelis LFM (2018) Light regulates ascorbate in plants: an integrated view on physiology and biochemistry. Environ Exp Bot 147:271–280. https://doi.org/10.1016/j.envexpbot.2017.10.009

    Article  CAS  Google Scholar 

  9. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671. https://doi.org/10.1093/jxb/erm124

    Article  CAS  PubMed  Google Scholar 

  10. Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG (2012) Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose Phosphorylase. J Biol Chem 287:14234–14245. https://doi.org/10.1074/jbc.M112.341982

    Article  CAS  Google Scholar 

  11. Takanori M, Miki Y, Yukinori Y, Masahiro T, Takahiro I, Shigeru S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851. https://doi.org/10.1074/jbc.m805538200

    Article  Google Scholar 

  12. Massot C, Stevens R, Genard M, Longuenesse JJ, Gautier H (2012) Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta 235:153–163. https://doi.org/10.1007/s00425-011-1493-x

    Article  CAS  PubMed  Google Scholar 

  13. Cruz-Rus E, Amaya I, Sanchez-Sevilla JF, Botella MA, Valpuesta V (2011) Regulation of L-ascorbic acid content in strawberry fruits. J Exp Bot 62:4191–4201. https://doi.org/10.1093/jxb/err122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang ZN, Xiao Y, Chen WS, Tang KX, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409. https://doi.org/10.1111/j.1744-7909.2010.00921

    Article  CAS  PubMed  Google Scholar 

  15. Gao Q, Zhang LX (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148. https://doi.org/10.1016/j.jplph.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Zhou Y, He ZY, Liu Q, Lai SJ, Yang HS (2018) Effect of exogenous ATP on the postharvest properties and pectin degradation of mung bean sprouts (Vigna radiata). Food Chem 251:9–17. https://doi.org/10.1016/j.foodchem.2018.01.061

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Tan GJT, Pang XY, Yuan WQ, Lai SJ, Yang HS (2018) Energy regulated nutritive and antioxidant properties during the germination and sprouting of broccoli sprouts (Brassica oleracea var. italica). J Agric Food Chem 66:6975–6985. https://doi.org/10.1021/acs.jafc.8b00466

    Article  CAS  Google Scholar 

  18. Liu FY, Nan X, Jian GH, Yan SJ, Xie LH, Brennan CS et al (2017) The manipulation of gene expression and the biosynthesis of vitamin C, E and folate in light-and dark-germination of sweet corn seeds. Sci Rep UK 7:1–11. https://doi.org/10.1038/s41598-017-07774-9

    Article  CAS  Google Scholar 

  19. Chen L, Wu JE, Li ZM, Liu Q, Zhao X, Yang HS (2019) Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chem 286:87–97. https://doi.org/10.1016/j.foodchem.2019.01.183

    Article  CAS  PubMed  Google Scholar 

  20. Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443. https://doi.org/10.1093/jxb/ers330

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Tan JTG, Zhao X, Yang DY, Yang HS (2019) Energy regulated enzyme and non-enzyme-based antioxidant properties of harvested organic mung bean sprouts (Vigna radiata). LWT-Food Sci Technol 107:228–235. https://doi.org/10.1016/j.lwt.2019.03.023

    Article  CAS  Google Scholar 

  22. Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173. https://doi.org/10.1007/s12038-011-9000-x

    Article  CAS  PubMed  Google Scholar 

  23. Kiyota M, Numayama N, Goto K (2006) Circadian rhythms of the L-ascorbic acid level in Euglena and spinach. J Photochem Photobiol B 84:197–203. https://doi.org/10.1016/j.jphotobiol.2006.03.004

    Article  CAS  Google Scholar 

  24. Schottler MA, Toth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5:188. https://doi.org/10.3389/fpls.2014.00188

  25. Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783. https://doi.org/10.1093/jxb/erw428

    Article  CAS  PubMed  Google Scholar 

  26. Lu YY, Chang XX, Guo XB (2019) Dynamic changes of ascorbic acid, phenolics biosynthesis and antioxidant activities in Mung beans (Vigna radiata) until maturation. Plants (Basel) 8:75. https://doi.org/10.3390/plants8030075

    Article  CAS  Google Scholar 

  27. Schimmeyer J, Bock R, Meyer EH (2016) L-galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Mol Biol 90:117–126. https://doi.org/10.1007/s11103-015-0400-4

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by National Natural Science Foundation of China (31501765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Guo.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 50 kb)

ESM 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Guo, X. The Effect of Light in Vitamin C Metabolism Regulation and Accumulation in Mung Bean (Vigna radiata) Germination. Plant Foods Hum Nutr 75, 24–29 (2020). https://doi.org/10.1007/s11130-019-00787-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-019-00787-x

Keywords

Navigation