Skip to main content
Log in

Geometric speed limit for fermionic dimer as a hallmark of Coulomb interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We are investigating the quantum geometric speed limit (QSL) for a Hubbard-type fermionic dimer subjected to the effects of decoherence and driving. The influence of decoherence is explored through the utilization of three distinct models that describe weak connections between the dimer and its environment, employing the Davies approximation. We consider two different types of driving: adiabatic driving and white noise stochastic driving. Our findings demonstrate that the properties of the geometric QSL are affected by both the on-site and inter-site Coulomb interactions among the fermions in the dimer. The interplay between Coulomb interactions and the influence or control exerted by external classical or quantum noise results in distinct time regimes for the evolution of the dimer, characterized by specific and potentially desirable QSL properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  2. Dittrich, W., Reuter, M.: Classical and Quantum Dynamics. Springer, Berlin (2001)

  3. Chruścinski, D., Jamiołkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhauser, Boston (2004)

    Google Scholar 

  4. Sjöqvist, E.: Geometry along evolution of mixed quantum states. Phys. Rev. Res. 2, 013344 (2020)

    Google Scholar 

  5. Sjöqvist, E.: Geometric phases in quantum information. Int. J. Quantum Chem. 115(19), 1311–1326 (2015)

    Google Scholar 

  6. Dajka, J., Mierzejewski, M., Łuczka, J.: Geometric phase of interacting qubits: mean-field analysis. Phys. Rev. A 80, 044303 (2009)

    ADS  Google Scholar 

  7. Deffner, S., Lutz, E.: Quantum speed limit for non-markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    ADS  Google Scholar 

  8. Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50, 453001 (2017)

    ADS  MathSciNet  Google Scholar 

  9. Wu, S.-X., Yu, C.-S.: Quantum speed limit based on the bound of bures angle. Sci. Rep. 10, 5500 (2020)

    ADS  Google Scholar 

  10. Dehdashti, S., Yasar, F., Harouni, M.B., Mahdifar, A.: Quantum speed limit in the thermal spin-boson system with and without tunneling term. Quantum Inf. Process. 19, 308 (2020)

    ADS  MathSciNet  Google Scholar 

  11. Awasthi, N., Haseli, S., Johri, U.C., Salimi, S., Dolatkhah, H., Khorashad, A.S.: Quantum speed limit time for correlated quantum channel. Quantum Inf. Process. 19, 308 (2020)

    MathSciNet  Google Scholar 

  12. Deffner, S.: Quantum speed limits and the maximal rate of information production. Phys. Rev. Res. 2, 013161 (2020)

    Google Scholar 

  13. García-Pintos, L.P., del Campo, A.: Quantum speed limits under continuous quantum measurements. New J. Phys. 21, 033012 (2019)

    ADS  MathSciNet  Google Scholar 

  14. Brody, D.C., Longstaff, B.: Evolution speed of open quantum dynamics. Phys. Rev. Res. 1, 033127 (2019)

    Google Scholar 

  15. Khan, F., Dajka, J.: Geometric speed limit of neutrino oscillation. Quantum Inf. Process. 20, 193 (2021)

    ADS  MathSciNet  Google Scholar 

  16. Mandelstam, L., Tamm, I.: The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. Springer, Berlin, pp. 115–123 (1991)

  17. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D: Nonlinear Phenomena, vol. 120, no. 1, pp. 188–195. Proceedings of the Fourth Workshop on Physics and Consumption (1998)

  18. Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)

    ADS  Google Scholar 

  19. Shao, Y., Liu, B., Zhang, M., Yuan, H., Liu, J.: Operational definition of a quantum speed limit. Phys. Rev. Res. 2, 023299 (2020)

    Google Scholar 

  20. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)

    Google Scholar 

  21. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  22. Essler, F.H.L., Frahm, H., Göhmann, F., Klümper, A., Korepin, V.E.: The One-Dimensional Hubbard Model. Cambridge University Press, Cambridge (2005)

  23. Nolting, W., Ramakanth, A.: Quantum Theory of Magnetism. Springer, Berlin (2009)

    Google Scholar 

  24. Schliemann, J., Cirac, J.I., Kuś, M., Lewenstein, M., Loss, D.: Quantum correlations in two-fermion systems. Phys. Rev. A 64, 022303 (2001)

    ADS  Google Scholar 

  25. Gigena, N., Rossignoli, R.: Entanglement in fermion systems. Phys. Rev. A 92, 042326 (2015)

    ADS  Google Scholar 

  26. Gigena, N., Rossignoli, R.: Bipartite entanglement in fermion systems. Phys. Rev. A 95, 062320 (2017)

    ADS  Google Scholar 

  27. Schüler, M., Rösner, M., Wehling, T.O., Lichtenstein, A.I., Katsnelson, M.I.: Optimal hubbard models for materials with nonlocal coulomb interactions: graphene, silicene, and benzene. Phys. Rev. Lett. 111, 036601 (2013)

    ADS  Google Scholar 

  28. Cao, X., Tilloy, A., Luca, A.D.: Entanglement in a fermion chain under continuous monitoring. SciPost Phys. 7, 24 (2019)

    ADS  MathSciNet  Google Scholar 

  29. Dajka, J.: Currents in a quantum nanoring controlled by non-classical electromagnetic field. Entropy, 23(6) (2021)

  30. Riha, C., Buchholz, S.S., Chiatti, O., Wieck, A.D., Reuter, D., Fischer, S.F.: Excess noise in alx ga1-x as/gaas based quantum rings. Appl. Phys. Lett. 117(6), 063102 (2020)

    ADS  Google Scholar 

  31. Esslinger, T.: Fermi-Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1(1), 129–152 (2010)

    ADS  Google Scholar 

  32. Nakagawa, M., Kawakami, N., Ueda, M.: Exact Liouvillian spectrum of a one-dimensional dissipative Hubbard model. Phys. Rev. Lett. 126, 110404 (2021)

    ADS  MathSciNet  Google Scholar 

  33. Sponselee, K., Freystatzky, L., Abeln, B., Diem, M., Hundt, B., Kochanke, A., Ponath, T., Santra, B., Mathey, L., Sengstock, K., Becker, C.: Dynamics of ultracold quantum gases in the dissipative fermi-hubbard model. Quantum Sci. Technol., 4, 014002 (2018)

  34. Grabiec, B., Matlak, M.: Extended hubbard model in the dimer representation. i. dimer hamiltonian in the large u limit. Acta Phys. Polonica A, 101, p. 537, 03 (2002)

  35. Silant’ev, A.: A dimer in the extended Hubbard model. Russ. Phys. J. 57, 03 (2015)

    Google Scholar 

  36. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    ADS  MathSciNet  Google Scholar 

  37. Santos, A.C., Sarandy, M.S.: Sufficient conditions for adiabaticity in open quantum systems. Phys. Rev. A 102, 052215 (2020)

    ADS  MathSciNet  Google Scholar 

  38. Sarandy, M.S., Lidar, D.A.: Adiabatic approximation in open quantum systems. Phys. Rev. A 71, 012331 (2005)

    ADS  Google Scholar 

  39. Albash, T., Boixo, S., Lidar, D.A., Zanardi, P.: Quantum adiabatic Markovian master equations. New J. Phys. 14, 123016 (2012)

    ADS  MathSciNet  Google Scholar 

  40. Rivas, A.: Quantum thermodynamics in the refined weak coupling limit. Entropy, 21(8) (2019)

  41. Johansson, J., Nation, P., Nori, F.: Qutip 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)

    ADS  Google Scholar 

  42. Johansson, J., Nation, P., Nori, F.: Qutip: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)

    ADS  Google Scholar 

  43. Rivas, A., Huelga, S.F.: Open Quantum Systems. Springer (2012)

  44. Schlosshauer, M.: Decoherence and the Quantum–to–Classical Transition. Springer (2007)

  45. Elenewski, J.E., Gruss, D., Zwolak, M.: Communication: master equations for electron transport: the limits of the Markovian limit. J. Chem. Phys. 147(10), 151101 (2017)

    ADS  Google Scholar 

  46. Winczewski, M., Mandarino, A., Horodecki, M., Alicki, R.: Bypassing the intermediate times dilemma for open quantum system (2021)

  47. Manzano, D.: A short introduction to the Lindblad master equation. AIP Adv. 10(02), 025106 (2020)

    ADS  Google Scholar 

  48. Jacobs, K.: Quantum Measurement Theory and Its Applications. Cambridge University Press (1999)

  49. Rodríguez, R.R., Ahmadi, B., Mazurek, P., Barzanjeh, S., Alicki, R., Horodecki, P.: Catalysis in charging quantum batteries. Phys. Rev. A 107, 042419 (2023)

    ADS  MathSciNet  Google Scholar 

  50. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    Google Scholar 

  51. Spohn, H., Lebowitz, J.L.: Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs. Wiley, pp. 109–142 (1978)

  52. Lendi, K., van Wonderen, A.J.: Davies theory for reservoir-induced entanglement in a bipartite system. J. Phys. A: Math. Theor. 40, 279–288 (2006)

    ADS  MathSciNet  Google Scholar 

  53. Dajka, J.: Faint trace of a particle in a noisy vaidman three-path interferometer. Sci. Rep. 11, 1123 (2021)

    Google Scholar 

  54. Davies, E.B., Spohn, H.: Open quantum systems with time-dependent hamiltonians and their linear response. J. Stat. Phys. 19, 511–523 (1978)

    ADS  MathSciNet  Google Scholar 

  55. Král, P., Thanopulos, I., Shapiro, M.: Colloquium: coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)

    ADS  Google Scholar 

  56. Łuczka, J.: Quantum open systems in a two-state stochastic reservoir. Czech J. Phys. 41(3), 289–292 (1991)

    ADS  MathSciNet  Google Scholar 

  57. Luczka, J., Niemiec, M.: A master equation for quantum systems driven by poisson white noise. J. Phys. A: Math. General, vol. 24, pp. L1021–L1024 (1991)

  58. Meyer, I., Shnerb, N.M.: Noise-induced stabilization and fixation in fluctuating environment. Sci. Rep. 8, 9726 (2018)

    ADS  Google Scholar 

  59. Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys. 8, 147–152 (2012)

    Google Scholar 

  60. Mierzejewski, M., Łuczka, J., Dajka, J.: Current in Hubbard rings manipulated via magnetic flux. J. Phys.: Condens. Matter 22, 245301 (2010)

    ADS  Google Scholar 

  61. Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)

    ADS  Google Scholar 

  62. Maleki, Y., Ahansaz, B., Maleki, A.: Speed limit of quantum metrology. Sci. Rep. 13, 12031 (2023)

    ADS  Google Scholar 

  63. Matlak, M., Aksamit, J., Grabiec, B., Nolting, W.: Hubbard Hamiltonian in the dimer representation large-u case. Ann. Phys. 12(5), 304–319 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Dajka.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dajka, J. Geometric speed limit for fermionic dimer as a hallmark of Coulomb interaction. Quantum Inf Process 23, 93 (2024). https://doi.org/10.1007/s11128-024-04299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04299-9

Keywords

Navigation