Skip to main content
Log in

Intermediate qutrit-assisted Toffoli gate decomposition with quantum error correction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Introducing a few intermediate qutrits for efficient decomposition of 3-qubit unitary gates has been proposed recently to obtain an exponential reduction in the depth of the decomposed circuit. An intermediate qutrit implies that a qubit is operated as a qutrit in a particular execution cycle. This method, primarily for the NISQ era, treats a qubit as a qutrit only for the duration when it requires access to the state \(\left| {2}\right\rangle \) during the computation. In this article, we study the challenges of extending this decomposition to the error-corrected regime. We first we show that if a qubit has to be in state \(\left| {2}\right\rangle \) at any point of time, then it must be encoded using a qutrit quantum error correcting code (QECC), thus resulting in a circuit with both qubits and qutrits. Qutrits being noisier than qubits, the former are expected to require higher levels of concatenation to achieve a particular accuracy than that for qubit-only decomposition. We derive analytically a relation between the levels of concatenation required for qubit-only and that for qubit–qutrit decomposition to achieve the same level of accuracy. Finally, we estimate (i) the degree of concatenation for both qubit–qutrit and qubit-only decompositions as a function of the probability of error and (ii) the criterion for which qubit–qutrit decomposition leads to a lower gate count than that for qubit-only decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013). https://doi.org/10.1109/TCAD.2013.2244643

    Article  Google Scholar 

  2. Baker, J.M., Duckering, C., Gokhale, P., Brown, N.C., Brown, K.R., Chong, F.T.: Improved quantum circuits via intermediate qutrits. ACM Trans. Quantum Comput. (2020). https://doi.org/10.1145/3406309

    Article  MathSciNet  Google Scholar 

  3. Bhoumik, D., Majumdar, R., Madan, D., Vinayagamurthy, D., Raghunathan, S., Sur-Kolay, S.: Efficient machine-learning-based decoder for heavy hexagonal QECC. arXiv:2210.09730 (2022)

  4. Bhoumik, D., Sen, P., Majumdar, R., Sur-Kolay, S., Kumar, L.K., Iyengar, S.S.: Machine-learning based decoding of surface code syndromes in quantum error correction. J. Eng. Res. Sci. 1(6), 21–35 (2022)

    Article  Google Scholar 

  5. Bravyi, S., Cross, A.W., Gambetta, J.M., Maslov, D., Rall, P., Yoder, T.J.: High-threshold and low-overhead fault-tolerant quantum memory. arXiv:2308.07915 (2023)

  6. Chamberland, C., Zhu, G., Yoder, T.J., Hertzberg, J.B., Cross, A.W.: Topological and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X 10(1), 011022 (2020)

    CAS  Google Scholar 

  7. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. Quantum Info. Comput. 6(4), 351–369 (2006)

    MathSciNet  Google Scholar 

  8. Eastin, B., Knill, E.: Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102(11), 110502 (2009)

    Article  ADS  PubMed  Google Scholar 

  9. Fischer, L.E., Miller, D., Tacchino, F., Barkoutsos, P.K., Egger, D.J., Tavernelli, I.: Ancilla-free implementation of generalized measurements for qubits embedded in a qudit space. arXiv:2203.07369 (2022)

  10. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)

    Article  ADS  Google Scholar 

  11. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80(5), 052312 (2009)

    Article  ADS  Google Scholar 

  12. Galda, A., Cubeddu, M., Kanazawa, N., Narang, P., Earnest-Noble, N.: Implementing a ternary decomposition of the toffoli gate on fixed-frequencytransmon qutrits. arXiv:2109.00558 (2021)

  13. Gokhale, P., Baker, J., Duckering, C., Chong, F., Brown, N., Brown, K.: Extending the frontier of quantum computers with qutrits. IEEE Micro 40(3), 64–72 (2020)

    Article  Google Scholar 

  14. Gokhale, P., Baker, J.M., Duckering, C., Brown, N.C., Brown, K.R., Chong, F.T.: Asymptotic improvements to quantum circuits via qutrits. In: Proceedings of the 46th International Symposium on Computer Architecture, pp. 554–566 (2019)

  15. Gonzales, A., Babu, A., Liu, J., Saleem, Z., Byrd, M.: Fault tolerant quantum error mitigation (2023)

  16. Grover, L.K.: A fast quantum mechanical algorithm for database search. STOC ’96, pp. 212–219. ACM, New York (1996). https://doi.org/10.1145/237814.237866

  17. IBM Quantum. https://quantum-computing.ibm.com/ (2022)

  18. Jones, C.: Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev. A 87, 022328 (2013). https://doi.org/10.1103/PhysRevA.87.022328

    Article  ADS  CAS  Google Scholar 

  19. Krastanov, S., Jiang, L.: Deep neural network probabilistic decoder for stabilizer codes. Sci. Rep. 7(1), 1–7 (2017)

    Article  CAS  Google Scholar 

  20. Litinski, D.: A game of surface codes: Large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019)

    Article  Google Scholar 

  21. Majumdar, R., Basu, S., Ghosh, S., Sur-Kolay, S.: Quantum error-correcting code for ternary logic. Phys. Rev. A 97(5), 052302 (2018)

    Article  ADS  CAS  Google Scholar 

  22. Majumdar, R., Basu, S., Sur-Kolay, S.: A method to reduce resources for quantum error correction. In: Reversible Computation: 9th International Conference, RC 2017, Kolkata, India, July 6-7, 2017, Proceedings 9, pp. 151–161. Springer (2017)

  23. Majumdar, R., Sur-Kolay, S.: Approximate ternary quantum error correcting code with low circuit cost. In: 2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), pp. 34–39. IEEE (2020)

  24. Majumdar, R., Sur-Kolay, S.: Designing ternary quantum error correcting codes from binary codes. J. Multiple-Valued Log. Soft Comput

  25. Majumdar, R., Sur-Kolay, S.: Designing ternary quantum error correcting codes from binary codes. J. Multiple-Valued Log. Soft Comput. 40 (2023)

  26. Ni, X.: Neural network decoders for large-distance 2D toric codes. Quantum 4, 310 (2020)

    Article  Google Scholar 

  27. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  28. Postler, L., Heuen, S., Pogorelov, I., Rispler, M., Feldker, T., Meth, M., Marciniak, C.D., Stricker, R., Ringbauer, M., Blatt, R., et al.: Demonstration of fault-tolerant universal quantum gate operations. Nature 605(7911), 675–680 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  30. Saha, A., Chatterjee, T., Chattopadhyay, A., Chakrabarti, A.: Intermediate qutrit-based improved quantum arithmetic operations with application on financial derivative pricing. arXiv:2205.15822 (2022)

  31. Saha, A., Chattopadhyay, A., Chakrabarti, A.: Robust quantum arithmetic operations with intermediate qutrits in the NISQ-era. Int. J. Theor. Phys. (2023). https://doi.org/10.1007/s10773-023-05339-3

    Article  MathSciNet  Google Scholar 

  32. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clustered marked states with lackadaisical quantum walks. arXiv:1804.01446 (2018)

  33. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Asymptotically improved circuit for a d-ary grover’s algorithm with advanced decomposition of the n-qudit toffoli gate. Phys. Rev. A 105(6), 062453 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Faster search of clustered marked states with lackadaisical quantum walks. Quantum Inf. Process. 21(8), 1–13 (2022)

    Article  MathSciNet  Google Scholar 

  35. Saha, A., Saha, D., Chakrabarti, A.: Moving quantum states without swap via intermediate higher-dimensional qudits. Phys. Rev. A 106(1), 012429 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Selinger, P.: Quantum circuits of \(t\)-depth one. Phys. Rev. A 87, 042302 (2013). https://doi.org/10.1103/PhysRevA.87.042302

    Article  ADS  CAS  Google Scholar 

  37. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 56–65. IEEE (1996)

  39. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  40. Varsamopoulos, S., Bertels, K., Almudever, C.G.: Comparing neural network based decoders for the surface code. IEEE Trans. Comput. 69(2), 300–311 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive comments which significantly improved the technical qualities of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Proof of Theorem 3

Proof

Let the accuracy obtained using only qubit and qubit–qutrit decomposition after k levels of concatenations be \(\epsilon _2\) and \(\epsilon _3\), respectively, where \(\epsilon _3 = \delta \cdot \epsilon _2\). Let \(\frac{1}{c_3}\) and \(\frac{1}{c_2}\) be the thresholds of the ternary and binary QECCs used for encoding. Then,

$$\begin{aligned} \frac{1}{c_3}(c_3.p_{2,3})^{2^k}= & {} \frac{\delta }{c_2}(c_2.p_2)^{2^k} \nonumber \\ \Rightarrow \frac{c_2}{c_3}(c_3.p_{2,3})^{2^k}= & {} \delta (c_2.p_2)^{2^k} \nonumber \\ \Rightarrow c(c_3.p_{2,3})^{2^k}= & {} \delta (c_2.p_2)^{2^k} ~\text {where} ~c=\frac{c_2}{c_3} \nonumber \\ \Rightarrow log(c) + 2^k log(c_3.p_{2,3})= & {} log(\delta ) + 2^k.log(c_2.p_2) \nonumber \\ \Rightarrow log(\delta )-log(c)= & {} 2^k[log(c_3.p_{2,3})-log(c_2.p_2)] \nonumber \\ \Rightarrow log(\delta )-log(c)= & {} 2^k log\frac{p_{2,3}}{c.p_2} \nonumber \\ \Rightarrow log(\delta )= & {} 2^k log\frac{p_{2,3}}{c.p_2} + log(c) \end{aligned}$$
(8)

\(\square \)

Proof of Theorem 4

Proof

The accuracy obtained after k levels of concatenation with a QECC having threshold \(\frac{1}{c}\) is \(\frac{1}{c}(c.p)^{2^k}\), where p is the probability of error. In the current setting, both types of decomposition are attaining the same accuracy after \(k_2\) and \(k_3\) levels of concatenations. If \(\frac{1}{c_3}\) and \(\frac{1}{c_2}\) be the thresholds for ternary and binary QECCs used, then,

$$\begin{aligned} \frac{1}{c_3}(c_3.p_{2,3})^{2^{k_3}}= & {} \frac{1}{c_2}(c_2.p_2)^{2^{k_2}} \\ \Rightarrow \frac{c_2}{c_3}(c_3.p_{2,3})^{2^{k_3}}= & {} \delta (c_2.p_2)^{2^{k_2}} \\ \Rightarrow c(c_3.p_{2,3})^{2^{k_3}}= & {} \delta (c_2.p_2)^{2^{k_2}} ~\text {where} ~c=\frac{c_2}{c_3} \\ \Rightarrow log(c) + 2^{k_3}log(c_3.p_{2,3})= & {} 2^{k_2}log(c_2.p_2) \\ \Rightarrow 2^{k_3}log(c_3.p_{2,3})= & {} 2^{k_2}log(c_2.p_2) - log(c) \\ \Rightarrow 2^{k_3 - k_2}log(c_3.p_{2,3})= & {} log(c_2.p_2) - \frac{1}{2^{k_2}}log(c) \\ \Rightarrow 2^{k_3 - k_2}log(c_3.p_{2,3})= & {} log(c_2.p_2) - log(c)^{\frac{1}{2^{k_2}}} \\ \Rightarrow 2^{k_3 - k_2}= & {} \frac{log(c_2.p_2) - log(c)^{\frac{1}{2^{k_2}}}}{log(c_3.p_{2,3})} \\ \Rightarrow k_3 - k_2= & {} log\left( \frac{log(c_2.p_2) - log(c)^{\frac{1}{2^{k_2}}}}{log(c_3.p_{2,3})}\right) \\ \Rightarrow k_3= & {} k_2 + log\left( \frac{log(c_2.p_2) - \frac{1}{2^{k_2}}log(\frac{c_2}{c_3})}{log(\delta ) + log(c_3.p_{2})}\right) ~\text {where} ~p_{2,3} = \delta .p_2 \end{aligned}$$

\(\square \)

Proof of Theorem 5

Proof

We require the overall gate count of the qubit–qutrit decomposition to be lower than that of the qubit decomposition. In other words, our requirement is

$$\begin{aligned} \left( \sum _{g \in \mathcal {G}_{2,3}} \kappa _g n_g\right) ^{k_3} \le \left( \sum _{g \in \mathcal {G}_{2}} \kappa _g n_g\right) ^{k_2} \end{aligned}$$

Now,

$$\begin{aligned} \left( \sum _{g \in \mathcal {G}_{2,3}} \kappa _g n_g\right) ^{k_3}\le & {} \left( \sum _{g \in \mathcal {G}_{2}} \kappa _g n_g\right) ^{k_2} \nonumber \\ \Rightarrow k_3 log\left( \sum _{g \in \mathcal {G}_{2,3}} \kappa _g n_g \right)\le & {} k_2 log\left( \sum _{g \in \mathcal {G}_{2}} \kappa _g n_g\right) \nonumber \\ \Rightarrow \frac{k_3}{k_2}\le & {} \frac{log\left( \sum _{g \in \mathcal {G}_{2}} \kappa _g n_g\right) }{log\left( \sum _{g \in \mathcal {G}_{2,3}}\kappa _g n_g\right) } \nonumber \\ \Rightarrow \frac{k_3}{k_2} - 1\le & {} \frac{log\left( \sum _{g \in \mathcal {G}_{2}} \kappa _g n_g\right) }{log\left( \sum _{g \in \mathcal {G}_{2,3}}\kappa _g n_g\right) } - 1 \nonumber \\ \Rightarrow k_3 - k_2 \le k_2 \cdot \frac{log\left( \frac{\sum _{g \in \mathcal {G}_{2}} \kappa _g n_g}{\sum _{g \in \mathcal {G}_{2,3}}\kappa _g n_g}\right) }{log\left( \sum _{g \in \mathcal {G}_{2,3}}\kappa _g n_g\right) } \end{aligned}$$
(9)

By Theorem 4, we have

\(k_3 = k_2 + log\left( \frac{log(c_2.p_2) - \frac{1}{2^{k_2}}log(\frac{c_2}{c_3})}{log(\delta ) + log(c_3.p_{2})}\right) \). Substituting this in Eq. (9), we have

$$\begin{aligned} log\left( \frac{log(c_2.p_2) - \frac{1}{2^{k_2}}log(\frac{c_2}{c_3})}{log(\delta ) + log(c_3.p_{2})}\right) \le k_2 \cdot \frac{log\frac{\sum _{g \in \mathcal {G}_{2}} (\kappa _g n_g)}{\sum _{g \in \mathcal {G}_{2,3}}(\kappa _g n_g)}}{log\sum _{g \in \mathcal {G}_{2,3}}(\kappa _g n_g)} \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, R., Saha, A., Chakrabarti, A. et al. Intermediate qutrit-assisted Toffoli gate decomposition with quantum error correction. Quantum Inf Process 23, 42 (2024). https://doi.org/10.1007/s11128-023-04251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04251-3

Keywords

Navigation