Skip to main content
Log in

Improved security bounds against the Trojan-horse attack in decoy-state quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a quantum Trojan-horse attack (THA), eavesdroppers learn encoded information by injecting bright light into encoded or decoded devices of quantum key distribution (QKD) systems. These attacks severely compromise the security of non-isolated systems. Thus, analytical security bound was derived in previous studies. However, these studies achieved poor performance unless the devices were strongly isolated. Here, we present a numerical method for achieving improved security bound for a decoy-state QKD system under THAs. The developed method takes advantage of the well-established numerical framework and significantly outperforms previous analytical bounds regarding the achievable final key and secure transmitted distance. The results provide a new tool for investigating the efficient security bounds of THA in practical decoy-state QKD systems. This study constitutes an important step toward securing QKD with real-life components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available on reasonable request

References

  1. Bennett , C.H., Brassard, G. et al.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Quantum cryptography: Public Key Distribution and Coin Tossing. vol. 175, New York (1984)

  2. Wang, S., Chen, W., Guo, J.-F., Yin, Z.-Q., Li, H.-W., Zhou, Z., Guo, G.-C., Han, Z.-F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37, 1008 (2012)

    Article  ADS  PubMed  Google Scholar 

  3. Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P.W.R., Przysiezna, A., Gómez, E.S., Figueroa, M., Vallone, G., Villoresi, P., da Silva, T.F., Xavier, G.B., Lima, G.: High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 96, 022317 (2017)

    Article  ADS  Google Scholar 

  4. Islam, N.T., Lim, C.C.W., Cahall, C., Kim, J., Gauthier, D.J.: Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Yuan, Z., Plews, A., Takahashi, R., Doi, K., Tam, W., Sharpe, A., Dixon, A., Lavelle, E., Dynes, J., Murakami, A., Kujiraoka, M., Lucamarini, M., Tanizawa, Y., Sato, H., Shields, A.J.: 10-Mb/s quantum key distribution. Lightw. Technol. 36, 3427 (2018)

    Article  Google Scholar 

  6. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ma, D., Liu, X., Huang, C., Chen, H., Lin, H., Wei, K.: Simple quantum key distribution using a stable transmitter–receiver scheme. Opt. Lett. 46, 2152 (2021)

    Article  ADS  PubMed  Google Scholar 

  8. Huang, C., Chen, Y., Jin, L., Geng, M., Wang, J., Zhang, Z., Wei, K.: Experimental secure quantum key distribution in the presence of polarization-dependent loss. Phys. Rev. A 105, 012421 (2022)

    Article  ADS  CAS  Google Scholar 

  9. Li, W., Zhang, L., Tan, H., Lu, Y., Liao, S.-K., Huang, J., Li, H., Wang, Z., Mao, H.-K., Yan, B., Li, Q., Liu, Y., Zhang, Q., Peng, C.-Z., You, L., Xu, F., Pan, J.-W.: High-rate quantum key distribution exceeding 110 Mb s\(^-1\). Nat. Photon. 17, 1 (2023)

    Article  Google Scholar 

  10. Grunenfelder, F., Boaron, A., Resta, G.V., Perrenoud, M., Rusca, D., Barreiro, C., Houlmann, R., Sax, R., Stasi, L., El-Khoury, S., Hanggi, E., Bosshard, N., Bussieres, F., Zbinden, H.: Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems. Nat. Photon. 17, 422 (2023)

    Article  ADS  CAS  Google Scholar 

  11. Du, Y., Zhu, X., Hua, X., Zhao, Z., Hu, X., Qian, Y., Xiao, X., Wei, K.: Silicon-based decoder for polarization-encoding quantum key distribution. Chip 2, 100039 (2023)

    Article  Google Scholar 

  12. Wei, K., Hu, X., Du, Y., Hua, X., Zhao, Z., Chen, Y., Huang, C., Xiao, X.: Resource-efficient quantum key distribution with integrated silicon photonics. Photon. Res. 11, 1364 (2023)

    Article  CAS  Google Scholar 

  13. Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chen, H., Wang, J., Tang, B., Li, Z., Liu, B., Sun, S.: Field demonstration of time-bin reference-frame-independent quantum key distribution via an intracity free-space link. Opt. Lett. 45, 3022 (2020)

    Article  ADS  PubMed  Google Scholar 

  15. Avesani, M., Calderaro, L., Schiavon, M., Stanco, A., Agnesi, C., Santamato, A., Zahidy, M., Scriminich, A., Foletto, G., Contestabile, G., Chiesa, M., Rotta, D., Artiglia, M., Montanaro, A., Romagnoli, M., Sorianello, V., Vedovato, F., Vallone, G., Villoresi, P.: Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. NPJ Quantum Inf. 7, 93 (2021)

    Article  ADS  Google Scholar 

  16. Al-Juboori, A., Zeng, H.Z.J., Nguyen, M.A.P., Ai, X., Laucht, A., Solntsev, A., Toth, M., Malaney, R., Aharonovich, I.: Quantum key distribution using a quantum emitter in hexagonal boron nitride. Adv. Quantum Technol. 6, 2300038 (2023)

    Article  Google Scholar 

  17. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Dynes, J.F., Wonfor, A., Tam, W.W.S., Sharpe, A.W., Takahashi, R., Lucamarini, M., Plews, A., Yuan, Z.L., Dixon, A.R., Cho, J., Tanizawa, Y., Elbers, J.P., Greißer, H., White, I.H., Penty, R.V., Shields, A.J.: Cambridge quantum network. NPJ Quantum Inf. 5, 101 (2019)

    Article  ADS  Google Scholar 

  19. Wang, S., Chen, W., Yin, Z.-Q., Li, H.-W., He, D.-Y., Li, Y.-H., Zhou, Z., Song, X.-T., Li, F.-Y., Wang, D., Chen, H., Han, Y.-G., Huang, J.-Z., Guo, J.-F., Hao, P.-L., Li, M., Zhang, C.-M., Liu, D., Liang, W.-Y., Miao, C.-H., Wu, P., Guo, G.-C., Han, Z.-F.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22, 21739 (2014)

    Article  ADS  PubMed  Google Scholar 

  20. Chen, Y.-A., Zhang, Q., Chen, T.-Y., Cai, W.-Q., Liao, S.-K., Zhang, J., Chen, K., Yin, J., Ren, J.-G., Chen, Z., Han, S.-L., Yu, Q., Liang, K., Zhou, F., Yuan, X., Zhao, M.-S., Wang, T.-Y., Jiang, X., Zhang, L., Liu, W.-Y., Li, Y., Shen, Q., Cao, Y., Lu, C.-Y., Shu, R., Wang, J.-Y., Li, L., Liu, N.-L., Xu, F., Wang, X.-B., Peng, C.-Z., Pan, J.-W.: An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589, 214 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Chen, W., Zhu, Y.-G., Morozov, P.V., Divochiy, A.V., Zhou, Z., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. (2022). https://doi.org/10.1038/s41566-021-00928-2

    Article  Google Scholar 

  22. Diamanti, E., Lo, H.-K., Qi, B., Yuan, Z.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 16025 (2016)

    Article  Google Scholar 

  23. Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595 (2014)

    Article  ADS  CAS  Google Scholar 

  25. Xu, F., Wei, K., Sajeed, S., Kaiser, S., Sun, S., Tang, Z., Qian, L., Makarov, V., Lo, H.-K.: Experimental quantum key distribution with source flaws. Phys. Rev. A 92, 032305 (2015)

    Article  ADS  Google Scholar 

  26. Pereira, M., Kato, G., Mizutani, A., Curty, M., Tamaki, K.: Quantum key distribution with correlated sources. Sci. Adv. 6, 4487 (2020)

    Article  ADS  Google Scholar 

  27. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A (2006). https://doi.org/10.1103/PhysRevA.74.022313

    Article  Google Scholar 

  28. Qi, B., Fred, F.C.-H., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quant. Inf. Comput. 7, 73 (2007)

    MathSciNet  Google Scholar 

  29. Sajeed, S., Chaiwongkhot, P., Bourgoin, J.-P., Jennewein, T., Lütkenhaus, N.L., Makarov, V.: Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch. Phys. Rev. A 91, 062301 (2015)

    Article  ADS  Google Scholar 

  30. Wei, K., Zhang, W., Tang, Y.-L., You, L., Xu, F.: Implementation security of quantum key distribution due to polarization-dependent efficiency mismatch. Phys. Rev. A 100, 022325 (2019)

    Article  ADS  CAS  Google Scholar 

  31. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)

    Article  ADS  Google Scholar 

  33. Vakhitov, A., Makarov, V., Hjelme, D.R.: Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J. Mod. Optic. 48, 2023 (2001)

    Article  ADS  Google Scholar 

  34. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A (2006). https://doi.org/10.1103/PhysRevA.73.022320

    Article  Google Scholar 

  35. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Gottesman, D., Lo, H.-K., Lütkenhaus, N.L., Preskill, J.: Security of quantum key distribution with imperfect devices. Quant. Inf. Comput. 4, 325 (2004)

    MathSciNet  Google Scholar 

  37. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. (2007). https://doi.org/10.1103/PhysRevLett.98.230501

    Article  PubMed  Google Scholar 

  38. Schwonnek, R., Goh, K.T., Primaatmaja, I.W., Tan, E.Y.Z., Wolf, R., Scarani, V., Lim, C.C.W.: Device-independent quantum key distribution with random key basis. Nat. Commun. 12, 2880 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, F., Zhang, Y.-Z., Zhang, Q., Pan, J.-W.: Device-independent quantum key distribution with random postselection. Phys. Rev. Lett. 128, 110506 (2022)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  40. Jain, N., Stiller, B., Khan, I., Makarov, V., Marquardt, C., Leuchs, G.: Risk analysis of trojan-horse attacks on practical quantum key distribution systems. IEEE. J. Sel. Top. Quant. 21, 168 (2015)

    Article  Google Scholar 

  41. Sajeed, S., Minshull, C., Jain, N., Makarov, V.: Invisible Trojan-horse attack. Sci. Rep. 7, 8403 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Tan, H., Li, W., Zhang, L., Wei, K., Xu, F.: Chip-based quantum key distribution against Trojan-horse attack. Phys. Rev. Appl. 15, 064038 (2021)

    Article  ADS  CAS  Google Scholar 

  43. Nitin, J., Elena, A., Imran, K., Vadim, M., Christoph, M., Gerd, L.: Trojan-horse attacks threaten the security of practical quantum cryptography. New J. Phys. 16, 123030 (2014)

    Article  MathSciNet  Google Scholar 

  44. Ponosova, A., Ruzhitskaya, D., Chaiwongkhot, P., Egorov, V., Makarov, V., Huang, A.: Protecting Fiber-Optic Quantum Key Distribution Sources Against Light-Injection Attacks (2022). arXiv preprint arXiv:2201.06114

  45. Lucamarini, M., Choi, I., Ward, M.B., Dynes, J.F., Yuan, Z.L., Shields, A.J.: Practical security bounds against the trojan-horse attack in quantum key distribution. Phys. Rev. X 5, 031030 (2015)

    Google Scholar 

  46. Tamaki, K., Curty, M., Lucamarini, M.: Decoy-state quantum key distribution with a leaky source. New J. Phys. 18, 065008 (2016)

    Article  ADS  Google Scholar 

  47. Wang, W., Tamaki, K., Curty, M.: Finite-key security analysis for quantum key distribution with leaky sources. New J. Phys. 20, 083027 (2018)

    Article  ADS  Google Scholar 

  48. Navarrete, A., Curty, M.: Improved Finite-Key Security Analysis of Quantum Key Distribution Against Trojan-Horse Attacks (2022). arXiv preprint arXiv:2202.06630

  49. Wang, W., Tamaki, K., Curty, M.: Measurement-device-independent quantum key distribution with leaky sources. Sci. Rep. 11, 1678 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, Y.-F., Wang, Y., Jiang, M.-S., Zhang, X.-X., Liu, F., Li, H.-W., Zhou, C., Tang, S.-B., Wang, J.-Y., Bao, W.-S.: Sending or not-sending twin-field quantum key distribution with flawed and leaky sources. Entropy 23, 1103 (2021)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  51. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. (2005). https://doi.org/10.1103/PhysRevLett.94.230504

    Article  PubMed  Google Scholar 

  52. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  PubMed  Google Scholar 

  53. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  PubMed  Google Scholar 

  54. Lo, H.-K., Curty, M., Qi, B.: Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  PubMed  Google Scholar 

  55. Wang, W., Lütkenhaus, N.: Numerical security proof for the decoy-state BB84 protocol and measurement-device-independent quantum key distribution resistant against large basis misalignment. Phys. Rev. Research 4, 043097 (2022)

    Article  ADS  CAS  Google Scholar 

  56. Ferenczi, A., Lütkenhaus, N.: Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning. Phys. Rev. A 85, 052310 (2012)

    Article  ADS  Google Scholar 

  57. Coles, P.J., Metodiev, E.M., Lütkenhaus, N.L.: Numerical approach for unstructured quantum key distribution. Nat. Commum. 7, 11712 (2016)

    Article  ADS  CAS  Google Scholar 

  58. Winick, A., Lütkenhaus, N.L., Coles, P.J.: Reliable numerical key rates for quantum key distribution. Quantum 2, 77 (2018)

    Article  Google Scholar 

  59. George, I., Lin, J., Lütkenhaus, N.L.: Numerical calculations of the finite key rate for general quantum key distribution protocols. Phys. Rev. Res. 3, 013274 (2021)

    Article  CAS  Google Scholar 

  60. Bunandar, D., Govia, L.C.G., Krovi, H., Englund, D.: Numerical finite-key analysis of quantum key distribution. NPJ Quantum Inf. 6, 104 (2020)

    Article  ADS  Google Scholar 

  61. Li, N.K.H., Lütkenhaus, N.: Improving key rates of the unbalanced phase-encoded BB84 protocol using the flag-state squashing model. Phys. Rev. Res. 2, 043172 (2020)

    Article  CAS  Google Scholar 

  62. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  63. Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quant. Inf. Comput. 7, 431 (2006)

    MathSciNet  Google Scholar 

  64. Liu, H., Wang, W., Wei, K., Fang, X.-T., Li, L., Liu, N.-L., Liang, H., Zhang, S.-J., Zhang, W., Li, H., You, L., Wang, Z., Lo, H.-K., Chen, T.-Y., Xu, F., Pan, J.-W.: Experimental demonstration of high-rate measurement-device-independent quantum key distribution over asymmetric channels. Phys. Rev. Lett. 122, 160501 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Sun, S., Xu, F.: Security of quantum key distribution with source and detection imperfections. New J. Phys. 23, 023011 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Shi-Hai Sun and Wenyuan Wang for their helpful discussions. This study was supported by the National Natural Science Foundation of China (Nos. 62171144 and 62031024 and 11905065), the Guangxi Science Foundation (Nos. 2021GXNSFAA220011 and 2021AC19384), and the Open Fund of IPOC (BUPT) (No. IPOC2021A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejin Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Measurement operator, Kraus operator, key mapping

In this section, we will describe the specific forms of operators required in BB84 and MDI protocols. Our protocol description model is similar to Ref. [55].

1.1 1 BB84

The measurement operator is:

\(P_{i}^{A}\)

\(|0\rangle \langle 0|\)

\(|1\rangle \langle 1|\)

\(|2\rangle \langle 2|\)

\(|3\rangle \langle 3|\)

 

\(P_{i}^{B}\)

\(|Z_{+} \rangle \langle Z_{+}| \oplus 0\)

\(|Z_{-} \rangle \langle Z_{-}|\oplus 0\)

\(|X_{+} \rangle \langle X_{+}|\oplus 0 \)

\(|X_{-} \rangle \langle X_{-}|\oplus 0\)

\( 1-\sum _{i=1}^{4}P_{i}^{B}\)

The tomographic scanning operator is:

$$\begin{aligned} |i\rangle \left\langle \left. j\right| _{A} \otimes {\mathbb {I}}_{\text{ dim } _{B}}.\right. \end{aligned}$$
(A1)

The Kraus operator is:

$$\begin{aligned} \begin{array}{l} K_{Z}=\left[ \left( \begin{array}{l} 1 \\ 0 \end{array}\right) \otimes \left( \begin{array}{llll} 1 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 0 \end{array}\right) +\left( \begin{array}{l} 0 \\ 1 \end{array}\right) \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 1 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 0 \end{array}\right) \right] \\ \sqrt{p_{Z}}\left( \begin{array}{lll} 0 &{} &{} \\ &{} 1 &{} \\ &{} &{} 1 \end{array}\right) \otimes \left( \begin{array}{l} 1 \\ 0 \end{array}\right) ,\\ K_{X}=\left[ \left( \begin{array}{l} 1 \\ 0 \end{array}\right) \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 1 &{} \\ &{} &{} &{} 0 \end{array}\right) +\left( \begin{array}{l} 0 \\ 1 \end{array}\right) \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 1 \end{array}\right) \right] \\ \sqrt{p_{X}}\left( \begin{array}{ccc} 0 &{} &{} \\ &{} 1 &{} \\ &{} &{} 1 \end{array}\right) \otimes \left( \begin{array}{l} 0 \\ 1 \end{array}\right) . \\ \end{array} \end{aligned}$$
(A2)

While the key maps are:

$$\begin{aligned} \begin{aligned} Z_{1}&=\left( \begin{array}{ll} 1 &{} 0 \\ 0 &{} 0 \end{array}\right) \otimes {\mathbb {I}}_{{\text {dim}}_{A} \times {\text {dim}}_{B} \times 2}, \\ Z_{2}&=\left( \begin{array}{ll} 0 &{} 0 \\ 0 &{} 1 \end{array}\right) \otimes {\mathbb {I}}_{{\text {dim}}_{A} \times {\text {dim}}_{B} \times 2}. \end{aligned} \end{aligned}$$
(A3)

1.2 2 MDI

The measurement operator is

\(P_{i}^{A}\)

\(|0\rangle \langle 0|\)

\(|1\rangle \langle 1|\)

\(|2\rangle \langle 2|\)

\(|3\rangle \langle 3|\)

\(P_{i}^{B}\)

\(|0\rangle \langle 0|\)

\(|1\rangle \langle 1|\)

\(|2\rangle \langle 2|\)

\(|3\rangle \langle 3|\)

\(P_{i}^{C}\, \left| \Phi ^{+}\right\rangle _{a b}\left\langle \left. \Phi ^{+}\right| _{a b}\right. \, \left| \Phi ^{+}\right\rangle _{a b}\left\langle \left. \Phi ^{+}\right| _{a b}\right. \, 1-\sum _{i=1}^{2} P_{i}^{C}\)

The tomographic scanning operator is

$$\begin{aligned} |i\rangle \left\langle \left. j\right| _{A} \otimes \mid k\right\rangle \left\langle \left. l\right| _{B} \otimes {\mathbb {I}}_{\text{ dim } _{C}}.\right. \end{aligned}$$
(A4)

The Kraus operator is

$$\begin{aligned} \begin{array}{l} K_{Z}=\left[ \left( \begin{array}{l} 1 \\ 0 \end{array}\right) \otimes \left( \begin{array}{llll} 1 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 0 \end{array}\right) +\left( \begin{array}{l} 0 \\ 1 \end{array}\right) \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 1 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 0 \end{array}\right) \right] \\ \otimes \left( \begin{array}{llll} 1 &{} &{} &{} \\ &{} 1 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 0 \end{array}\right) \otimes \left( \begin{array}{lll} 1 &{} &{} \\ &{} 1 &{} \\ &{} &{} 0 \end{array}\right) \otimes \left( \begin{array}{l} 1 \\ 0 \end{array}\right) , \\ K_{X}=\left[ \left( \begin{array}{l} 1 \\ 0 \end{array}\right) \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 1 &{} \\ &{} &{} &{} 0 \end{array}\right) +\left( \begin{array}{l} 0 \\ 1 \end{array}\right) \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 0 &{} \\ &{} &{} &{} 1 \end{array}\right) \right] \\ \quad \otimes \left( \begin{array}{llll} 0 &{} &{} &{} \\ &{} 0 &{} &{} \\ &{} &{} 1 &{} \\ &{} &{} &{} 1 \end{array}\right) \otimes \left( \begin{array}{lll} 1 &{} &{} \\ &{} 1 &{} \\ &{} &{} 0 \end{array}\right) \otimes \left( \begin{array}{l} 0 \\ 1 \end{array}\right) . \\ \end{array} \end{aligned}$$
(A5)

While the key maps are

$$\begin{aligned} \begin{array}{l} Z_{1}=\left( \begin{array}{ll} 1 &{} 0 \\ 0 &{} 0 \end{array}\right) \otimes {\mathbb {I}}_{{\text {dim}}_{A} \times {\text {dim}}_{B} \times {\text {dim}}_{C} \times 2}, \\ Z_{2}=\left( \begin{array}{ll} 0 &{} 0 \\ 0 &{} 1 \end{array}\right) \otimes {\mathbb {I}}_{{\text {dim}}_{A} \times {\text {dim}}_{B} \times {\text {dim}}_{C} \times 2}. \end{array} \end{aligned}$$
(A6)

Appendix B: Channel model

In this section, we will provide a description of the channel model used in our simulation. The channels utilized in our simulation include loss, misalignment, and dark count rate channels, which are similar to [55].

1.1 1 BB84

In the WCP source, the output is a coherent state with amplitude of \(\mu \). After passing through the misaligned channel, the amplitude reaching each detector can be summarized as

  

Bob’s detectors (passive detection)

  

\(\mathrm {Z_{+}}\)

\(\mathrm {Z_{-}}\)

\(\mathrm {X_{+}}\)

\(\mathrm {X_{-}}\)

 

\(\mathrm {Z_{+}}\)

\(\sqrt{p_{Z}} \cos \theta \)

\(\sqrt{p_{Z}} \sin \theta \)

\(\sqrt{p_{X}} \cos \alpha \)

\(\sqrt{p_{X}} \sin \alpha \quad \quad \qquad (B1)\)

Alice

\(\mathrm {Z_{-}}\)

\(-\sqrt{p_{Z}} \sin \theta \)

\(\sqrt{p_{Z}} \cos \theta \)

\(\sqrt{p_{X}} \sin \alpha \)

\(-\sqrt{p_{X}} \cos \alpha \)

sends

\(\mathrm {X_{+}}\)

\(\sqrt{p_{Z}} \sin \alpha \)

\(\sqrt{p_{Z}} \cos \alpha \)

\(\sqrt{p_{X}} \cos \theta \)

\(-\sqrt{p_{X}} \sin \theta \)

 

\(\mathrm {X_{-}}\)

\(\sqrt{p_{Z}} \cos \alpha \)

\(-\sqrt{p_{Z}} \sin \alpha \)

\(\sqrt{p_{X}} \sin \theta \)

\(\sqrt{p_{X}} \cos \theta \)

Here, \(\alpha =\frac{\pi }{4} -\theta \), \(\theta \) is the misalignment. Considering the channel loss, the loss factor \(\sqrt{\mu \eta } \) should be multiplied before the above amplitudes. By considering the dark count, we can get the click probability of each detector:

$$\begin{aligned} p_{j \mid i}^{\text{ click } }=1-\left( 1-p_\textrm{d}\right) \times e^{-\left| \alpha _{j|i}\right| ^{2}}, \end{aligned}$$
(B2)

where \(\alpha _{j|i}\) is the amplitude reaching the detector, \(p_\textrm{d}\) is the detector dark count rate \(i,j\in \left\{ H,V,+,-\right\} \). The probabilities of individual detector clicks are known, for a given i, there could be a total of 4 detectors that will register a click, leading to 16 possible detection patterns. The probability of each detection pattern \( b_{1} b_{2} b_{3} b_{4} \) is represented by

$$\begin{aligned} p_{b_{1} b_{2} b_{3} b_{4} \mid i}=\Pi _{j=1,2,3,4}\left\{ \overline{b_{j}}+p_{j \mid i}^{\text{ click } }(-1)^{\overline{b_{j}}}\right\} , \end{aligned}$$
(B3)

where \(b_{k} \) represents the response of the k detectors, \(b_{k}=0,1 \). \(\overline{b_{k}} \) is the bit flip of \(\overline{b_{k}}\).

For a given signal intensities \(\mu \) (\(\mu \in \left\{ u, v, w \right\} \)), iterate through all the i and all of the detection mode to obtain \(4\times 16\) data, and then write it into a matrix \(P_{raw,\mu }\) with \(4\times 16\) data.

Suppose that double-click events on the same basis are randomly assigned to a measurement value, while double-click events on different basis are discarded. The following deletion model is defined:

$$\begin{aligned} \begin{aligned} M_{H}&=[0,0,0,0,0,0,0,0,1,0,0,0,0.5,0,0,0] \\ M_{V}&=[0,0,0,0,1,0,0,0,0,0,0,0,0.5,0,0,0] \\ M_{+}&=[0,0,1,0.5,0,0,0,0,0,0,0,0,0,0,0,0] \\ M_{-}&=[0,1,0,0.5,0,0,0,0,0,0,0,0,0,0,0,0] \\ M_{\varnothing }&=[1,0,0,0,0,1,1,1,0,1,1,1,0,1,1,1] \\ M&=\left[ M_{H}^{T}, M_{V}^{T}, M_{+}^{T}, M_{-}^{T}, M_{\varnothing }^{T}\right] . \end{aligned} \end{aligned}$$
(B4)

Then the simulated statistical data can be given by

$$\begin{aligned} P_{\mu }=P_{\text{ raw } , \mu } \times M. \end{aligned}$$
(B5)

1.2 2 MDI

In the case of MDI, the WCP source of Alice and Bob transmits a weak coherent state with amplitude of \(\mu \). After passing through the misaligned channel, the signals of Alice and Bob are mismatched \(\theta _{A}\), \(\theta _{B}\). Because H and V are different modes, we can simply think of \(\sqrt{\mu _{A}} \cos \theta _{A} \) in H mode (similar to Alice and Bob), \(\sqrt{\mu _{A}} \sin \theta _{A} \) in mode V(Alice and Bob are similar); then, the amplitude reaching each detector is expressed as follows:

$$\begin{aligned} \begin{aligned} \alpha _{3 H}^{\phi }&=\sqrt{\mu _{A} \eta _{A} \cos \theta _{A} / 2}+i \sqrt{\mu _{B} \eta _{B} \cos \theta _{B} / 2} e^{i \phi } \\ \alpha _{4 H}^{\phi }&=i \sqrt{\mu _{A} \eta _{A} \cos \theta _{A} / 2}+\sqrt{\mu _{B} \eta _{B} \cos \theta _{B} / 2} e^{i \phi } \\ \alpha _{3 V}^{\phi }&=\sqrt{\mu _{A} \eta _{A} \sin \theta _{A} / 2}+i \sqrt{\mu _{B} \eta _{B} \sin \theta _{B} / 2} e^{i \phi } \\ \alpha _{4 V}^{\phi }&=i \sqrt{\mu _{A} \eta _{A} \sin \theta _{A} / 2}+\sqrt{\mu _{B} \eta _{B} \sin \theta _{B} / 2} e^{i \phi }. \end{aligned} \end{aligned}$$
(B6)

Then the click probability of each detector can be given by

$$\begin{aligned} p_{k \mid i j}^{\text{ click } , \phi }=1-\left( 1-p_\textrm{d}\right) \times e^{-\left| \alpha _{k \mid i j}^{\phi }\right| ^{2}}, \end{aligned}$$
(B7)

where \(\alpha _{k \mid i j}^{\phi }\) is the amplitude reaching the detector, \(i,j\in \left\{ H,V,+,-\right\} \), \(k\in \left\{ 3\,H,3V,4\,H,4V\right\} \).

For fixed ij, a total of 4 detectors may respond, which results in a total of 16 possible detection modes. The response probability of each detection mode \( b_{1} b_{2} b_{3} b_{4} \) is given by

$$\begin{aligned} p_{b_{1} b_{2} b_{3} b_{4} \mid i j}=\prod _{k=1,2,3,4}\left\{ \overline{b_{k}}+p_{k \mid i j}^{\text{ click } }(-1)^{\overline{b_{k}}}\right\} , \end{aligned}$$
(B8)

where \(b_{k} \) represents the response of the k detectors, \(b_{k}=0,1 \). \(\overline{b_{k}} \) is the bit flip of \(\overline{b_{k}}\).

For a given signal intensities \(\mu _{A}\mu _{B}\) (\(\mu _{A},\mu _{B} \in \left\{ u, v, w \right\} \)), traverse all ij and detection modes, there are \( 4\times 4\times 16\) data in total. Write the data as \(P_{raw,\mu _{A}\mu _{B}}\) and define the following deletion model

$$\begin{aligned} \begin{aligned} M_{\Psi ^{-}}&=[0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0] \\ M_{\Psi ^{+}}&=[0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0] \\ M_{\varnothing }&=1_{1 \times 16}-M_{\Psi ^{+}}-M_{\Psi ^{-}} \\ M&=\left[ M_{\Psi ^{-}}^{T}, M_{\Psi ^{+}}^{T}, M_{\varnothing }^{T}\right] . \end{aligned} \end{aligned}$$
(B9)

Then the simulated statistical data can be given by

$$\begin{aligned} P_{\mu _{A} \mu _{B}}=P_{\text{ raw, } \mu _{A} \mu _{B}} \times M. \end{aligned}$$
(B10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zheng, B., Zhang, C. et al. Improved security bounds against the Trojan-horse attack in decoy-state quantum key distribution. Quantum Inf Process 23, 40 (2024). https://doi.org/10.1007/s11128-023-04238-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04238-0

Keywords

Navigation