Skip to main content
Log in

Floquet-engineering magnonic NOON states with performance improved by soft quantum control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a high-performance scheme of soft quantum control to deterministically generate entangled NOON states between two magnon modes. A superconducting qubit is considered as a data bus coupled to two magnon modes and a circuit resonator that accounts for providing an N-photon Fock state. Assisted by the Floquet engineering, effective couplings among the photon mode in the resonator and two magnon modes are constructed and can induce a chiral Fock-state transfer from the photon mode to one magnon mode, for which the magnonic Fock-state receiver mode is dependent of the qubit state. Therefore, a superposed qubit state can exactly lead to a magnonic NOON state. Compared with the recent scheme of generating magnonic NOON states (Qi and Jing in Phys Rev A 107:013702, 2023) that uses constant effective couplings, the present scheme designs Gaussian-type soft control of effective couplings, which observably improves the fidelity and robustness of generating the magnonic NOON state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Afek, I., Ambar, O., Silberberg, Y.: High-NOON states by mixing quantum and classical light. Science 328(5980), 879–881 (2010)

    ADS  MathSciNet  Google Scholar 

  2. Grün, D.S., Wittmann, W.K., Ymai, L.H., Links, J., Foerster, A.: Protocol designs for NOON states. Commun. Phys. 5(1), 36 (2022)

    Google Scholar 

  3. Pezzè, L., Smerzi, A., Oberthaler, M.K., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    ADS  MathSciNet  Google Scholar 

  4. Wildfeuer, C.F., Lund, A.P., Dowling, J.P.: Strong violations of Bell-type inequalities for path-entangled number states. Phys. Rev. A 76, 052101 (2007)

    ADS  MathSciNet  Google Scholar 

  5. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)

    ADS  Google Scholar 

  6. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    ADS  Google Scholar 

  7. Haas, J., Schwartz, M., Rengstl, U., Jetter, M., Michler, P., Mizaikoff, B.: Chem/bio sensing with non-classical light and integrated photonics. Analyst 143, 593–605 (2018)

    ADS  Google Scholar 

  8. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    ADS  Google Scholar 

  9. Grün, D.S., Ymai, L.H., Wittmann, W.K., Tonel, A.P., Foerster, A., Links, J.: Integrable atomtronic interferometry. Phys. Rev. Lett. 129, 020401 (2022)

    ADS  Google Scholar 

  10. Zhang, J., Um, M., Lv, D., Zhang, J.N., Duan, L.M., Kim, K.: NOON states of nine quantized vibrations in two radial modes of a trapped ion. Phys. Rev. Lett. 121, 160502 (2018)

    ADS  Google Scholar 

  11. Israel, Y., Rosen, S., Silberberg, Y.: Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014)

    ADS  Google Scholar 

  12. Jones, J.A., Karlen, S.D., Fitzsimons, J., Ardavan, A., Benjamin, S.C., Briggs, G.A.D., Morton, J.J.L.: Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324(5931), 1166–1168 (2009)

    ADS  Google Scholar 

  13. Liu, Q.G., Wu, Q.C., Leng, C.L., Liang, Y., Ji, X., Zhang, S.: Generation of atomic NOON states via adiabatic passage. Quantum Inf. Process. 13(12), 2801–2814 (2014)

    ADS  MathSciNet  Google Scholar 

  14. Song, C., Su, S.L., Bai, C.H., Ji, X., Zhang, S.: Generation of atomic NOON states via shortcuts to adiabatic passage. Quantum Inf. Process. 15(10), 4159–4173 (2016)

    ADS  Google Scholar 

  15. Chen, J., Wei, L.F.: Deterministic generations of photonic NOON states in cavities via shortcuts to adiabaticity. Phys. Rev. A 95, 033838 (2017)

    ADS  Google Scholar 

  16. Su, Q.P., Zhu, H.H., Yu, L., Zhang, Y., Xiong, S.J., Liu, J.M., Yang, C.P.: Generating double NOON states of photons in circuit QED. Phys. Rev. A 95, 022339 (2017)

    ADS  Google Scholar 

  17. Li, C., Sampuli, E.M., Song, J., Xia, Y., Ding, W.: One-step engineering many-atom NOON state. New J. Phys. 20(9), 093019 (2018)

    ADS  Google Scholar 

  18. Soto-Eguibar, F., Moya-Cessa, H.M.: Generation of NOON states in waveguide arrays. Ann. Phys. 531(12), 1900250 (2019)

    MathSciNet  Google Scholar 

  19. Qi, S., Jing, J.: Generating NOON states in circuit QED using a multiphoton resonance in the presence of counter-rotating interactions. Phys. Rev. A 101, 033809 (2020)

    ADS  Google Scholar 

  20. Li, C., Dong, Y., Zhang, J., Xia, Y., Song, J., Ding, W.: Engineering distributed atomic NOON states via single-photon detection. Quantum Inf. Process. 20(4), 139 (2021)

    ADS  MathSciNet  Google Scholar 

  21. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)

    ADS  Google Scholar 

  22. Gu, X., Kockum, A.F., Miranowicz, A., xi Liu, Y., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017)

    ADS  MathSciNet  Google Scholar 

  23. Yuan, H.Y., Yan, P., Zheng, S., He, Q.Y., Xia, K., Yung, M.H.: Steady Bell state generation via magnon-photon coupling. Phys. Rev. Lett. 124, 053602 (2020)

    ADS  Google Scholar 

  24. Yuan, H., Cao, Y., Kamra, A., Duine, R.A., Yan, P.: Quantum magnonics: when magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022)

    ADS  MathSciNet  Google Scholar 

  25. Zare Rameshti, B., Viola Kusminskiy, S., Haigh, J.A., Usami, K., Lachance-Quirion, D., Nakamura, Y., Hu, C.M., Tang, H.X., Bauer, G.E., Blanter, Y.M.: Cavity magnonics. Phys. Rep. 979, 1–61 (2022)

    ADS  MathSciNet  Google Scholar 

  26. Li, Y., Yefremenko, V.G., Lisovenko, M., Trevillian, C., Polakovic, T., Cecil, T.W., Barry, P.S., Pearson, J., Divan, R., Tyberkevych, V., Chang, C.L., Welp, U., Kwok, W.K., Novosad, V.: Coherent coupling of two remote magnonic resonators mediated by superconducting circuits. Phys. Rev. Lett. 128, 047701 (2022)

    ADS  Google Scholar 

  27. Han, J.X., Wu, J.L., Wang, Y., Xia, Y., Jiang, Y.Y., Song, J.: Tripartite high-dimensional magnon-photon entanglement in phases with broken \(\cal{PT} \)-symmetry of a non-Hermitian hybrid system. Phys. Rev. B 105, 064431 (2022)

    ADS  Google Scholar 

  28. Qi, S., Jing, J.: Floquet generation of a magnonic NOON state. Phys. Rev. A 107, 013702 (2023)

    ADS  Google Scholar 

  29. Haase, J.F., Wang, Z.Y., Casanova, J., Plenio, M.B.: Soft quantum control for highly selective interactions among joint quantum systems. Phys. Rev. Lett. 121, 050402 (2018)

    ADS  MathSciNet  Google Scholar 

  30. Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948)

    ADS  Google Scholar 

  31. Xu, J., Zhong, C., Han, X., Jin, D., Jiang, L., Zhang, X.: Floquet cavity electromagnonics. Phys. Rev. Lett. 125, 237201 (2020)

    ADS  Google Scholar 

  32. Li, X., Ma, Y., Han, J., Chen, T., Xu, Y., Cai, W., Wang, H., Song, Y., Xue, Z.Y., Yin, Zq., Sun, L.: Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl. 10, 054009 (2018)

    ADS  Google Scholar 

  33. Wu, J.L., Wang, Y., Han, J.X., Su, S.L., Xia, Y., Jiang, Y., Song, J.: Resilient quantum gates on periodically driven Rydberg atoms. Phys. Rev. A 103, 012601 (2021)

    ADS  Google Scholar 

  34. James, D., Jerke, J.: Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys. 85(6), 625–632 (2007)

    ADS  Google Scholar 

  35. Shao, W., Wu, C., Feng, X.L.: Generalized James’ effective Hamiltonian method. Phys. Rev. A 95, 032124 (2017)

    ADS  Google Scholar 

  36. Zhang, X., Ding, X., Ge, X.: SWAP gate on two modes of an optical cavity mediated by a laser-dressed V-type atom. Quantum Inf. Process. 19, 59 (2020)

    ADS  Google Scholar 

  37. Wu, J., Tang, S., Wang, Y., Wang, X., Han, J., Lü, C., Song, J., Su, S., Xia, Y., Jiang, Y.: Unidirectional acoustic metamaterials based on nonadiabatic holonomic quantum transformations. Sci. China Phys. Mech. Astron. 65(2), 220311 (2021)

    Google Scholar 

  38. Yin, H.D., Shao, X.Q.: Gaussian soft control-based quantum fan-out gate in ground-state manifolds of neutral atoms. Opt. Lett. 46(10), 2541–2544 (2021)

    ADS  Google Scholar 

  39. Yun, M.R., Cheng, S., Yan, L.L., Jia, Y., Su, S.L.: Realizing multiple-qubit entangling gate in Rydberg atoms via soft quantum control. Europhys. Lett. 140(5), 58003 (2022)

    ADS  Google Scholar 

  40. Zhu, Q., Lü, C., Wu, J.L., Li, Y.: Gaussian soft control for controlled-Z gate on superconducting qubits with unilateral external driving. Laser Phys. Lett. 19(9), 095206 (2022)

    ADS  Google Scholar 

  41. Wu, J.L., Wang, Y., Han, J.X., Su, S.L., Xia, Y., Song, J., Jiang, Y.: Fast and robust multiqubit gates on Rydberg atoms by periodic pulse engineering. Adv. Quantum Technol. 5(10), 2200042 (2022)

    Google Scholar 

  42. Li, X., Shao, X., Li, W.: Single temporal-pulse-modulated parameterized controlled-phase gate for Rydberg atoms. Phys. Rev. Appl. 18, 044042 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by key research and development program of science and technology in Henan under the grant 202102210139, 212102210098, in part by key scientific research project of Henan Province under the grant 23A520047, in part by lifelong education special project in Henan Province under the grant 45746, in part by the research teaching series project in Henan Province under the grant 2022SYJXLX089, and in part by the industry–university research project in ministry of education under the grant 220600643282037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuyang Xu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Xia, R. & Xu, L. Floquet-engineering magnonic NOON states with performance improved by soft quantum control. Quantum Inf Process 22, 454 (2023). https://doi.org/10.1007/s11128-023-04200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04200-0

Keywords

Navigation