Skip to main content
Log in

Twin-field quantum encryption protocol for E-payment based on blockchain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Electronic payment (E-payment) systems rely heavily on secure communication, typically achieved through encryption processes in cryptography. Traditional cryptography often relies on complex mathematical problems for encryption, such as difficult decompositions or extracting discrete logarithms. With the development of quantum computing, the security of these classical encryption methods is under threat. To address this challenge, quantum E-payment protocols have emerged as a potential solution. However, the practical quantum E-payment protocols are limited due to the channel transmission efficiency decreasing exponentially with distance. This is further constrained by the Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. To address this challenge, we propose a twin-field quantum encryption protocol for E-payment based on blockchain. In our protocol, we propose a twin-field quantum encryption method to authenticate identity and detect eavesdropping simultaneously. It not only eliminates side-channel attacks on the detectors but also has the potential to break the PLOB bound. Our security analysis shows that our E-payment protocol exhibits security properties such as blindness, unforgeability, and undeniability. Furthermore, our protocol demonstrates withstand against common inside and outside attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Gandawati, T.S.: Analisis Proses Adopsi Electronic Payment System Dengan Menggunakan UTAUT Model. Universitas Gunadarma, Skripsi. Makassar (2007)

    Google Scholar 

  2. Junadi, S.: A model of factors influencing consumer’s intention to use e-payment system in Indonesia. Procedia Comput. Sci. 59, 214–220 (2015)

    Article  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997)

    Article  ADS  Google Scholar 

  6. Brassard, G.: Quantum computing: The end of classical cryptography? ACM SIGACT News 25(4), 15–21 (1994)

    Article  Google Scholar 

  7. Bellare, M., Garay, J.A., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik, G., Van Herreweghen, E., Waidner, M.: Design, implementation, and deployment of the IKP secure electronic payment system. IEEE J. Sel. Areas Commun. 18(4), 611–627 (2000)

    Article  Google Scholar 

  8. Zhang, Y., Deng, R.H., Liu, X., Zheng, D.: Outsourcing service fair payment based on blockchain and its applications in cloud computing. IEEE Trans. Serv. Comput. 14(4), 1152–1166 (2018)

    Article  Google Scholar 

  9. Phoenix, S.J., Townsend, P.D.: Quantum cryptography: How to beat the code breakers using quantum mechanics. Contemp. Phys. 36(3), 165–195 (1995)

    Article  ADS  Google Scholar 

  10. Hitoshi, I., Norbert, L., Dominic, M.: Unconditional security of practical quantum key distribution. arXiv:quant-ph/0107017 (2001)

  11. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  12. Xiaojun, Wen: An e-payment system based on quantum blind and group signature. Phys. Scr. 82(6), 065403 (2010)

    Article  ADS  Google Scholar 

  13. Wen, X., Chen, Y., Fang, J.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12, 549–558 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(4), 1651–1657 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, J.Z., Yang, Y.Y., Xie, S.C.: A third-party e-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56(9), 2981–2989 (2017)

    Article  MathSciNet  Google Scholar 

  16. Xi, G., Jian-Zhong, Z., Shu-Cui, X.: A trusted third-party e-payment protocol based on quantum blind signature without entanglement. Int. J. Theor. Phys. 1–8 (2018)

  17. Tiliwalidi, K., Zhang, J.Z., Xie, S.C.: A multi-bank e-payment protocol based on quantum proxy blind signature. Int. J. Theor. Phys. 58(10), 3510–3520 (2019)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J.-L., Hu, M.-S., Jia, Z.-J., Wang, L.-P.: A novel e-payment protocol implented by blockchain and quantum signature. Int. J. Theor. Phys. 58, 1315–1325 (2019)

    Article  MathSciNet  Google Scholar 

  19. Shao, Q.-F., Jin, C.-Q., Zhang, Z., Qian, W.-N., Zhou, A.-Y.: Blockchain: architecture and research progress. Chin. J. Comput. 41(5), 969–988 (2018)

    Google Scholar 

  20. Gou, X.-L., Shi, R.-H., Gao, W., Wu, M.: A novel quantum e-payment protocol based on blockchain. Quantum Inf. Process. 20(5), 192 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. Li, E., Shi, R.-H., Li, K., Li, Y.: Measurement-device-independent quantum protocol for E-payment based on blockchain. Quantum Inf. Process. 22(1), 40 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 15043 (2017)

    Article  ADS  Google Scholar 

  23. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  24. Yin, H.-L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9(1), 3045 (2019)

    Article  ADS  Google Scholar 

  25. Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.-K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123(10), 100506 (2019)

    Article  ADS  Google Scholar 

  26. Fang, X.-T., Zeng, P., Liu, H., Zou, M., Wu, W., Tang, Y.-L., Sheng, Y.-J., Xiang, Y., Zhang, W., Li, H., et al.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14(7), 422–425 (2020)

    Article  ADS  Google Scholar 

  27. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.-L., Guan, J.-Y., Yu, Z.-W., Xu, H., Lin, J., et al.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124(7), 070501 (2020)

    Article  ADS  Google Scholar 

  28. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012–1236 (2020)

    Article  ADS  Google Scholar 

  29. Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020315 (2022)

    Article  ADS  Google Scholar 

  30. Shibiao, T., Minmin, T.I., Yun, J.I.A.: Development of measurement device independent type QKD. Inf. Commun. Technol. Policy 47(7), 23–31 (2021)

    Google Scholar 

  31. Bennett, C.H.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Computers Systems & Signal Processing Bangalore India (1984)

  32. Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., Wang, F.-Y.: Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern.: Syst. 49(11), 2266–2277 (2019)

    Article  Google Scholar 

  33. Jiang, C., Yu, Z.-W., Hu, X.-L., Wang, X.-B.: Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses. Phys. Rev. Appl. 12(2), 024061 (2019)

    Article  ADS  Google Scholar 

  34. Nofer, M., Gomber, P., Hinz, O., Schiereck, D.: Blockchain. Bus. Inf. Syst. Eng. 59, 183–187 (2017)

    Article  Google Scholar 

  35. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

    Article  Google Scholar 

  36. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Futur. Gener. Comput. Syst. 107, 841–853 (2020)

    Article  Google Scholar 

  37. Zhou, N.-R., Zhang, T.-F., Xie, X.-W., Wu, J.-Y.: Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution. Signal Process.: Image Commun. 110, 116891 (2023)

    Google Scholar 

  38. Gong, L.-H., Chen, Z.-Y., Qin, L.-G., Huang, J.-H.: Robust multi-party semi-quantum private comparison protocols with decoherence-free states against collective noises. Adv. Quantum Technol. 2300097 (2023)

  39. Niu, X.-F., Zhang, J.-Z., Xie, S.-C., Chen, B.-Q.: A third-party e-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 57, 2563–2573 (2018)

    Article  MathSciNet  Google Scholar 

  40. Xie, S.-C., Niu, X.-F., Zhang, J.-Z.: An improved quantum e-payment system. Int. J. Theor. Phys. 59, 445–453 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their helpful comments. This research was supported by the Open Foundation of State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications (SKLNST-2021-1-05) and the Key Lab of Information Network Security, Ministry of Public Security (C21605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Le Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial or personal relationships with any individuals or organizations that could inappropriately influence our work. We have no professional or personal interests, of any nature or kind, in any products, services, and/or companies that could influence the positions presented or the review process in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GD., Luo, JJ. & Wang, QL. Twin-field quantum encryption protocol for E-payment based on blockchain. Quantum Inf Process 22, 430 (2023). https://doi.org/10.1007/s11128-023-04181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04181-0

Keywords

Navigation