Skip to main content
Log in

Is it possible to recover Heisenberg limit by collecting information from memory environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In quantum metrology, by using entangled probes, Heisenberg limit (HL), which surpasses the standard quantum limit (SQL) with uncorrelated probes, can be attained in the absence of noise. However, the entangled states are fragile in the environment. Even small amount of noise greatly reduces the precision limit. Recent results show that the magnitude of the reduced precision limit is determined by the direction of Hamiltonian which depends on the parameter to be estimated in comparison with the direction of noise. Especially, in parallel case, the precision limit becomes SQL-like. Here, we demonstrate that just in parallel case, the parameter to be estimated has clearly imprints on the “small” changed environment after proper measurements. Though the precision limit of the measures on the probe system itself becomes SQL-like, one kept the results of former measurements can collect the information of the parameter by choosing detector with proper initial state and proper interaction Hamiltonian and measuring the detector after the detector-environment evolution. The precision limit becomes HL-like after proper detector-environment evolution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  2. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  3. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Phys. Rev. Lett. 79, 3865 (1997)

    Article  ADS  Google Scholar 

  5. Monras, A., Paris, M.G.A.: Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007)

    Article  ADS  Google Scholar 

  6. Demkowicz-Dobrzański, R., Kołodyński, J., Guta, M.: The elusive Heisenberg limit in quantum enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Article  ADS  Google Scholar 

  7. Demkowicz-Dobrzański, R., Dorner, U., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Quantum phase estimation with lossy interferometers. Phys. Rev. A 80, 013825 (2009)

    Article  ADS  Google Scholar 

  8. Dorner, U., Demkowicz-Dobrzański, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009)

    Article  ADS  Google Scholar 

  9. Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)

    Article  ADS  Google Scholar 

  10. Kacprowicz, M., Demkowicz-Dobrzański, R., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photonics 4, 357 (2010)

    Article  ADS  Google Scholar 

  11. Genoni, M.G.A., Olivares, S., Paris, M.G.: Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106, 153603 (2011)

    Article  ADS  Google Scholar 

  12. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  13. Escher, B.M., de MatosFilho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Article  Google Scholar 

  14. Ma, J., Huang, Y., Wang, X., Sun, C.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  15. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  16. Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. 111, 120401 (2013)

    Article  ADS  Google Scholar 

  17. Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5, 181 (2009)

    Article  Google Scholar 

  18. Zwolak, M., Quan, H.T., Zurek, W.H.: Quantum Darwinism in a hazy environment. Phys. Rev. Lett. 103, 110402 (2009)

    Article  ADS  Google Scholar 

  19. Blume-Kohout, R., Zurek, W.H.: Quantum Darwinism in quantum Brownian motion: the vacuum as a witness. Phys. Rev. Lett. 101, 240405 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Blume-Kohout, R., Zurek, W.H.: Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys. Rev. A 73, 062310 (2006)

    Article  ADS  Google Scholar 

  21. Blume-Kohout, R., Zurek, W.H.: A simple example of quantum Darwinism: redundant information storage in many-spin environments. Found. Phys. 35, 1857 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ollivier, H., Poulin, D., Zurek, W.H.: Environment as a witness: selective proliferation of information and emergence of objectivity in a quantum universe. Phys. Rev. A 72, 042113 (2005)

    Article  ADS  Google Scholar 

  23. Ollivier, Harold, Poulin, David, Zurek, Wojciech H.: Objective properties from subjective quantum states: environment as a witness. Phys. Rev. Lett. 93, 220401 (2004)

    Article  ADS  Google Scholar 

  24. Brandão, F.G.S.L., Piani, M., Horodecki, P.: Generic emergence of classical features in quantum Darwinism. Nat. Commun. 6, 7908 (2015)

    Article  ADS  Google Scholar 

  25. Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  26. Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational Markov condition for quantum processes. Phys. Rev. Lett. 120, 040405 (2018)

    Article  ADS  Google Scholar 

  27. Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Non-Markovian quantum processes: complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018)

    Article  ADS  Google Scholar 

  28. Budini, A.A.: Quantum non-Markovian processes break conditional past-future independence. Phys. Rev. Lett. 121, 240401 (2018)

    Article  ADS  Google Scholar 

  29. Budini, A.A.: Conditional past-future correlation induced by non-Markovian dephasing reservoirs. Phys. Rev. A 99, 052125 (2019)

    Article  ADS  Google Scholar 

  30. Jin, Y.: Quantifying environmental memory degree from the aspect of environmental sensitivity. Quantum Inf. Process. 20, 77 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Jin, Y.: Definition of conditional Fisher information-estimating hidden parameter of probe state through environmental memory. Eur. Phys. J. Plus 136, 729 (2021)

    Article  Google Scholar 

  32. Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  33. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Cucchietti, F.M., Paz, J.P., Zurek, W.H.: Decoherence from spin environments. Phys. Rev. A 72, 052113 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Yu, P. Wu, J. Hu, Y. Zhou, J. Zhang, Q. Pan for helpful discussions. We thank X. Sun for discussions on numerical calculations. This work was supported by the National Natural Science Foundation of China under Grants No. 12165003, the special funding of Guiyang science and technology bureau and Guiyang University[GYU-KY-(2022)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Jin.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y. Is it possible to recover Heisenberg limit by collecting information from memory environment. Quantum Inf Process 22, 379 (2023). https://doi.org/10.1007/s11128-023-04140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04140-9

Keywords

Navigation