Skip to main content
Log in

Effective chirality discrimination via dissipation dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a protocol to distinguish chiral molecules using dissipation dynamics. The physical model is based on a four-level structure with a ground level, a lower level, and two excited levels. Under the condition of large detuning, a chirality-selective transition from the ground level to a dressed state of two excited levels can be achieved, where only the left-handed enantiomer can be exited to the dressed state. The left-handed enantiomer in the dressed state will couple with the cavity mode and evolve to the lower level with a photon creation. When the photon loss happens, the left-handed enantiomer cannot be excited to the dressed state again by absorbing the photon, thus remaining in the lower level. Then, the chiralities of the enantiomers can be distinguished by measuring their final states. We take 1,2-propanediol molecules as an example to demonstrate the protocol, where the difference of the populations of the lower level for the left- and right-handed enantiomer approaches unity in a relatively short operation time. Numerical simulation results show that the scheme is insensitive to the influence of the phase drift and frequency mismatch. Therefore, the protocol may provide an alternative approach for chirality discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statements

The data that support the findings of this study are available in the article.

References

  1. Fox, S.: Organic chemistry, 3rd edn. Jones and Bartlett, Sudbury, MA (2004)

    Google Scholar 

  2. Bruice, P.Y.: Organic chemistry, 5th edn. Pearson, Upper Saddle River, NJ (2006)

    Google Scholar 

  3. McMurry, J.E.: Organic chemistry, 7th edn. Brooks/Cole, Florence, KY (2007)

    Google Scholar 

  4. Woolley, R.G.: Quantum theory and molecular structure. Adv. Phys. 25, 27 (1976). https://doi.org/10.1080/00018737600101352

    Article  ADS  Google Scholar 

  5. Harris, A.B., Kamien, R.D., Lubensky, T.C.: Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745 (1999). https://doi.org/10.1103/revmodphys.71.1745

    Article  ADS  Google Scholar 

  6. Lorenz, H., Seidel-Morgenstern, A.: Processes to separate enantiomers. Angewandte Chemie Int Ed 53(5), 1218–1250 (2014). https://doi.org/10.1002/anie.201302823

    Article  Google Scholar 

  7. Quack, M., Stohner, J., Willeke, M.: High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Ann. Rev. Phys. Chem. 59, 741 (2008). https://doi.org/10.1146/annurev.physchem.58.032806.104511

    Article  ADS  Google Scholar 

  8. Gal, J.: The discovery of stereoselectivity at biological receptors: Arnaldo piutti and the taste of the asparagine enantiomers-history and analysis on the 125th anniversary. Chirality 24, 959 (2012). https://doi.org/10.1002/chir.22071

    Article  Google Scholar 

  9. Barrett, K.T., Metrano, A.J., Rablen, P.R., Miller, S.J.: Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71 (2014). https://doi.org/10.1038/nature13189

    Article  ADS  Google Scholar 

  10. Ma, R., Wang, B., Lu, S., Zhang, Y., Yin, L., Huang, J., Deng, S., Wang, Y., Yu, G.: Characterization of pharmaceutically active compounds in dongting lake, china: occurrence, chiral profiling and environmental risk. Sci. Total Environ. 557, 268 (2016). https://doi.org/10.1016/j.scitotenv.2016.03.053

    Article  ADS  Google Scholar 

  11. Naaman, R., Paltiel, Y., Waldeck, D.H.: Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250 (2019). https://doi.org/10.1038/s41570-019-0087-1

    Article  Google Scholar 

  12. Wasielewski, M.R., Forbes, M.D.E., Frank, N.L., Kowalski, K., Scholes, G.D., Yuen-Zhou, J., Baldo, M.A., Freedman, D.E., Goldsmith, R.H., Goodson, T., Kirk, M.L., McCusker, J.K., Ogilvie, J.P., Shultz, D.A., Stoll, S., Whaley, K.B.: Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490 (2020). https://doi.org/10.1038/s41570-020-0200-5

    Article  Google Scholar 

  13. Bodenhöfer, K., Hierlemann, A., Seemann, J., Gauglitz, G., Koppenhoefer, B., Gpel, W.: Chiral discrimination using piezoelectric and optical gas sensors. Nature 387, 577 (1997). https://doi.org/10.1038/42426

    Article  ADS  Google Scholar 

  14. Rikken, G.L.J.A., Raupach, E.: Enantioselective magnetochiral photochemistry. Nature 405, 932 (2000). https://doi.org/10.1038/35016043

    Article  ADS  Google Scholar 

  15. Bielski, R., Tencer, M.: Absolute enantioselective separation: optical activity ex machina. J. Sep. Sci. 28, 2325 (2005). https://doi.org/10.1002/jssc.200500173

    Article  Google Scholar 

  16. Cameron, R.P., Barnett, S.M., Yao, A.M.: Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014). https://doi.org/10.1088/1367-2630/16/1/013020

    Article  ADS  Google Scholar 

  17. Yachmenev, A., Onvlee, J., Zak, E., Owens, A., Küpper, J.: Field-induced diastereomers for chiral separation. Phys. Rev. Lett. 123, 243202 (2019). https://doi.org/10.1103/physrevlett.123.243202

    Article  ADS  Google Scholar 

  18. Li, X., Shapiro, M.: Theory of the optical spatial separation of racemic mixtures of chiral molecules. J. Chem. Phys. 132, 194315 (2010). https://doi.org/10.1063/1.3429884

    Article  ADS  Google Scholar 

  19. Eilam, A., Shapiro, M.: Spatial separation of dimers of chiral molecules. Phys. Rev. Lett. 110, 213004 (2013). https://doi.org/10.1103/physrevlett.110.213004

    Article  ADS  Google Scholar 

  20. Bradshaw, D.S., Andrews, D.L.: Laser optical separation of chiral molecules. Opt. Lett. 40, 677 (2015). https://doi.org/10.1364/ol.40.000677

    Article  ADS  Google Scholar 

  21. Liu, B., Ye, C., Sun, C.P., Li, Y.: Spatial enantioseparation of gaseous chiral molecules. Phys. Rev. A 104, 013113 (2021). https://doi.org/10.1103/physreva.104.013113

    Article  ADS  Google Scholar 

  22. Shapiro, M., Frishman, E., Brumer, P.: Coherently controlled asymmetric synthesis with achiral light. Phys. Rev. Lett. 84, 1669 (2000). https://doi.org/10.1103/physrevlett.84.1669

    Article  ADS  Google Scholar 

  23. Brumer, P., Frishman, E., Shapiro, M.: Principles of electric-dipole-allowed optical control of molecular chirality. Phys. Rev. A 65, 015401 (2001). https://doi.org/10.1103/physreva.65.015401

    Article  ADS  Google Scholar 

  24. Li, Y., Bruder, C.: Dynamic method to distinguish between left- and right-handed chiral molecules. Phys. Rev. A 77, 015403 (2008). https://doi.org/10.1103/physreva.77.015403

    Article  ADS  Google Scholar 

  25. Leibscher, M., Giesen, T.F., Koch, C.P.: Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules. J. Chem. Phys. 151, 014302 (2019). https://doi.org/10.1063/1.5097406

    Article  ADS  Google Scholar 

  26. Hoki, K., Kröner, D., Manz, J.: Selective preparation of enantiomers from a racemate by laser pulses: model simulation for oriented atropisomers with coupled rotations and torsions. Chem. Phys. 267, 59 (2001). https://doi.org/10.1016/s0301-0104(01)00264-6

    Article  Google Scholar 

  27. Kröner, D., Shibl, M.F., González, L.: Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment. Chem. Phys. Lett. 372, 242 (2003). https://doi.org/10.1016/s0009-2614(03)00407-x

    Article  ADS  Google Scholar 

  28. Ahuja, S.: (ed.): Chiral Separation Methods for Pharmaceutical and Biotechnological Products. Wiley, Nashville, TN. https://www.wiley.com/en-us/Chiral+Separation+Methods+for+Pharmaceutical+and+Biotechnological+Products-p-9781118097755 (2011)

  29. Král, P., Shapiro, M.: Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett. 87, 183002 (2001). https://doi.org/10.1103/physrevlett.87.183002

    Article  ADS  Google Scholar 

  30. Král, P., Thanopulos, I., Shapiro, M., Cohen, D.: Two-step enantio-selective optical switch. Phys. Rev. Lett. 90, 033001 (2003). https://doi.org/10.1103/physrevlett.90.033001

    Article  ADS  Google Scholar 

  31. Torosov, B.T., Drewsen, M., Vitanov, N.V.: Efficient and robust chiral resolution by composite pulses. Phys. Rev. A 101, 063401 (2020). https://doi.org/10.1103/physreva.101.063401

    Article  ADS  Google Scholar 

  32. Torosov, B.T., Drewsen, M., Vitanov, N.V.: Chiral resolution by composite raman pulses. Phys. Rev. Research 2, 043235 (2020). https://doi.org/10.1103/PhysRevResearch.2.043235

    Article  ADS  Google Scholar 

  33. Vitanov, N.V., Drewsen, M.: Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity. Phys. Rev. Lett. 122, 173202 (2019). https://doi.org/10.1103/physrevlett.122.173202

    Article  ADS  Google Scholar 

  34. Wu, J.-L., Wang, Y., Song, J., Xia, Y., Su, S.-L., Jiang, Y.-Y.: Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths. Phys. Rev. A 100, 043413 (2019). https://doi.org/10.1103/physreva.100.043413

    Article  ADS  Google Scholar 

  35. Ye, C., Zhang, Q., Chen, Y.-Y., Li, Y.: Effective two-level models for highly efficient inner-state enantioseparation based on cyclic three-level systems of chiral molecules. Phys. Rev. A 100, 043403 (2019). https://doi.org/10.1103/physreva.100.043403

    Article  ADS  Google Scholar 

  36. Wu, J.-L., Wang, Y., Han, J.-X., Wang, C., Su, S.-L., Xia, Y., Jiang, Y., Song, J.: Two-path interference for enantiomer-selective state transfer of chiral molecules. Phys. Rev. Appl 13, 044021 (2020). https://doi.org/10.1103/physrevapplied.13.044021

    Article  ADS  Google Scholar 

  37. Wu, J.-L., Wang, Y., Su, S.-L., Xia, Y., Jiang, Y., Song, J.: Discrimination of enantiomers through quantum interference and quantum zeno effect. Opt. Express 28, 33475 (2020). https://doi.org/10.1364/oe.404089

    Article  ADS  Google Scholar 

  38. Kang, Y.-H., Shi, Z.-C., Song, J., Xia, Y.: Effective discrimination of chiral molecules in a cavity. Opt. Lett. 45, 4952 (2020). https://doi.org/10.1364/ol.398859

    Article  ADS  Google Scholar 

  39. Liu, B., Ye, C., Sun, C.P., Li, Y.: Spatial enantioseparation of gaseous chiral molecules. Phys. Rev. A 104, 013113 (2021). https://doi.org/10.1103/physreva.104.013113

    Article  ADS  Google Scholar 

  40. Guo, Y., Gong, X., Ma, S., Shu, C.-C.: Cyclic three-level-pulse-area theorem for enantioselective state transfer of chiral molecules. Phys. Rev. A 105, 013102 (2022). https://doi.org/10.1103/physreva.105.013102

    Article  ADS  Google Scholar 

  41. Kuklinski, J.R., Gaubatz, U., Hioe, F.T., Bergmann, K.: Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys. Rev. A 40, 6741 (1989). https://doi.org/10.1103/physreva.40.6741

    Article  ADS  Google Scholar 

  42. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998). https://doi.org/10.1103/revmodphys.70.1003

    Article  ADS  Google Scholar 

  43. Vitanov, N.V., Rangelov, A.A., Shore, B.W., Bergmann, K.: Stimulated raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017). https://doi.org/10.1103/revmodphys.89.015006

    Article  ADS  Google Scholar 

  44. Daems, D., Ruschhaupt, A., Sugny, D., Guérin, S.: Robust quantum control by a single-shot shaped pulse. Phys. Rev. Lett. 111, 050404 (2013). https://doi.org/10.1103/physrevlett.111.050404

    Article  ADS  Google Scholar 

  45. Genov, G.T., Vitanov, N.V.: Dynamical suppression of unwanted transitions in multistate quantum systems. Phys. Rev. Lett. 110, 133002 (2013). https://doi.org/10.1103/physrevlett.110.133002

    Article  ADS  Google Scholar 

  46. Torosov, B.T., Vitanov, N.V.: Smooth composite pulses for high-fidelity quantum information processing. Phys. Rev. A 83, 053420 (2011). https://doi.org/10.1103/physreva.83.053420

    Article  ADS  Google Scholar 

  47. Shi, Z.-C., Wu, H.-N., Shen, L.-T., Song, J., Xia, Y., Yi, X.X., Zheng, S.-B.: Robust single-qubit gates by composite pulses in three-level systems. Phys. Rev. A 103, 052612 (2021). https://doi.org/10.1103/physreva.103.052612

    Article  ADS  MathSciNet  Google Scholar 

  48. Shi, Z.-C., Zhang, C., Ran, D., Xia, Y., Ianconescu, R., Friedman, A., Yi, X.X., Zheng, S.-B.: Composite pulses for high fidelity population transfer in three-level systems. New J. Phys. 24, 023014 (2022). https://doi.org/10.1088/1367-2630/ac48e7

    Article  ADS  Google Scholar 

  49. Zhang, C., Liu, Y., Shi, Z.-C., Song, J., Xia, Y., Zheng, S.-B.: Robust population inversion in three-level systems by composite pulses. Phys. Rev. A 105, 042414 (2022). https://doi.org/10.1103/physreva.105.042414

    Article  ADS  Google Scholar 

  50. Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009). https://doi.org/10.1088/1751-8113/42/36/365303

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010). https://doi.org/10.1103/physrevlett.105.123003

    Article  ADS  Google Scholar 

  52. Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013). https://doi.org/10.1103/physrevlett.111.100502

    Article  Google Scholar 

  53. Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., Campo, A., Guéry-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Chapter 2 - shortcuts to adiabaticity. Adv. Atom. Mol. Opt. Phys. 62, 117–169 (2013)

    Article  ADS  Google Scholar 

  54. Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019). https://doi.org/10.1103/RevModPhys.91.045001

    Article  ADS  MathSciNet  Google Scholar 

  55. Kang, Y.-H., Chen, Y.-H., Wang, X., Song, J., Xia, Y., Miranowicz, A., Zheng, S.-B., Nori, F.: Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Phys Rev Res 4, 1 (2022). https://doi.org/10.1103/physrevresearch.4.013233

    Article  Google Scholar 

  56. Kang, Y.-H., Song, J., Xia, Y.: Error-resistant nonadiabatic binomial-code geometric quantum computation using reverse engineering. Opt. Lett. 47(16), 4099 (2022). https://doi.org/10.1364/ol.469968

    Article  Google Scholar 

  57. Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005). https://doi.org/10.1103/physrevlett.95.087001

    Article  ADS  Google Scholar 

  58. Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009). https://doi.org/10.1038/nphys1342

    Article  Google Scholar 

  59. Vollbrecht, K.G.H., Muschik, C.A., Cirac, J.I.: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011). https://doi.org/10.1103/physrevlett.107.120502

    Article  ADS  Google Scholar 

  60. Shao, X.Q., Wu, J.H., Yi, X.X., Long, G.-L.: Dissipative preparation of steady greenberger-horne-zeilinger states for rydberg atoms with quantum zeno dynamics. Phys. Rev. A 96, 062315 (2017). https://doi.org/10.1103/physreva.96.062315

    Article  ADS  Google Scholar 

  61. Chen, Y.-H., Shi, Z.-C., Song, J., Xia, Y., Zheng, S.-B.: Coherent control in quantum open systems: an approach for accelerating dissipation-based quantum state generation. Phys. Rev. A 96, 043853 (2017). https://doi.org/10.1103/physreva.96.043853

    Article  ADS  Google Scholar 

  62. Qin, W., Wang, X., Miranowicz, A., Zhong, Z., Nori, F.: Heralded quantum controlled-phase gates with dissipative dynamics in macroscopically distant resonators. Phys. Rev. A 96, 012315 (2017). https://doi.org/10.1103/physreva.96.012315

    Article  ADS  Google Scholar 

  63. Wang, Y., Hu, C.-S., Shi, Z.-C., Huang, B.-H., Song, J., Xia, Y.: Accelerated and noise-resistant protocol of dissipation-based knill-laflamme-milburn state generation with lyapunov control. Ann. Phys. 531, 1900006 (2019). https://doi.org/10.1002/andp.201900006

    Article  MathSciNet  Google Scholar 

  64. Liu, Y.-C., Xiao, Y.-F., Luan, X., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013). https://doi.org/10.1103/physrevlett.110.153606

    Article  ADS  Google Scholar 

  65. Lü, X.-Y., Wu, Y., Johansson, J.R., Jing, H., Zhang, J., Nori, F.: Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015). https://doi.org/10.1103/PhysRevLett.114.093602

    Article  ADS  Google Scholar 

  66. Su, S.-L., Guo, Q., Wang, H.-F., Zhang, S.: Simplified scheme for entanglement preparation with rydberg pumping via dissipation. Phys. Rev. A 92, 022328 (2015). https://doi.org/10.1103/physreva.92.022328

    Article  ADS  Google Scholar 

  67. Patterson, D., Schnell, M., Doyle, J.M.: Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497(7450), 475–477 (2013). https://doi.org/10.1038/nature12150

    Article  ADS  Google Scholar 

  68. Domingos, S.R., Pérez, C., Schnell, M.: Sensing chirality with rotational spectroscopy. Ann. Rev. Phys. Chem. 69, 499 (2018). https://doi.org/10.1146/annurev-physchem-052516-050629

    Article  ADS  Google Scholar 

  69. Pérez, C., Steber, A.L., Krin, A., Schnell, M.: State-specific enrichment of chiral conformers with microwave spectroscopy. J. Phys. Chem. Lett. 9, 4539 (2018). https://doi.org/10.1021/acs.jpclett.8b01815

    Article  Google Scholar 

  70. Hollas, J.M.: Modern Spectroscopy. Wiley, Cambridge (2004)

    Google Scholar 

  71. Atkins, P.W., Friedman, R.S.: Molecular quantum mechanics. Oxford University Press, Oxfordshire (2011)

    Google Scholar 

  72. McHale, J.L.: Molecular spectroscopy. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  73. Lovas, F.J., Plusquellic, D.F., Pate, B.H., Neill, J.L., Muckle, M.T., Remijan, A.J.: Microwave spectrum of 1, 2-propanediol. J. Mol. Spectrosc. 257, 82 (2009). https://doi.org/10.1016/j.jms.2009.06.013

    Article  ADS  Google Scholar 

  74. Lu, W., Zhao, Y., Barker, P.F.: Cooling molecules in optical cavities. Phys. Rev. A 76, 013417 (2007). https://doi.org/10.1103/PhysRevA.76.013417

    Article  ADS  Google Scholar 

  75. Eibenberger, S., Doyle, J., Patterson, D.: Enantiomer-specific state transfer of chiral molecules. Phys. Rev. Lett. 118, 123002 (2017). https://doi.org/10.1103/physrevlett.118.123002

    Article  ADS  Google Scholar 

  76. Pérez, C., Steber, A.L., Domingos, S.R., Krin, A., Schmitz, D., Schnell, M.: Coherent enantiomer-selective population enrichment using tailored microwave fields. Angew. Chem. Int. Ed. 56, 12512 (2017). https://doi.org/10.1002/anie.201704901

    Article  Google Scholar 

  77. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum zeno dynamics. Physics Letters A 275(1–2), 12–19 (2000). https://doi.org/10.1016/s0375-9601(00)00566-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Facchi, P., Pascazio, S.: Quantum zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002). https://doi.org/10.1103/PhysRevLett.89.080401

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045, 11874114, and 11674060, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant 2020J06011, and the Project from Fuzhou University under Grant JG202001-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Hao Kang, Bi-Hua Huang or Yan Xia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, WW., Lin, ZP., Kang, YH. et al. Effective chirality discrimination via dissipation dynamics. Quantum Inf Process 22, 350 (2023). https://doi.org/10.1007/s11128-023-04109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04109-8

Keywords

Navigation