Skip to main content
Log in

Spreading entanglement through pairwise exchange interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum state synthesis typically aims to convert an initial direct-product state into a highly entangled target state. As a benchmark problem, we consider the task of spreading one excitation among N two-level atoms or qubits. Starting from an initial state where one qubit is excited, we seek a target state where all qubits have the same excitation amplitude—a generalized-W state. This target is to be reached by suitably chosen pairwise exchange interactions. For example, we may have a setup where any pair of qubits can be brought into proximity for a controllable period of time. We describe three protocols that accomplish this task, each with \(N-1\) tightly constrained steps. In the first, one atom acts as a flying qubit that sequentially interacts with all others. In the second, qubits interact pairwise in sequential order. In these two cases, the required interaction times follow a pattern with an elegant geometric interpretation. They correspond to angles within the spiral of Theodorus—a construction known for more than two millennia. The third protocol follows a divide-and-conquer approach—dividing equally between two qubits at each step. For large N, the flying-qubit protocol yields a total interaction time that scales as \(\sqrt{N}\), while the sequential approach scales linearly with N. For the divide-and-conquer approach, the time has a lower bound that scales as \(\log N\)—achievable when multiple exchange interactions can take place in parallel. We argue that this is the optimal solution that requires the least time. For any protocol that achieves this task, the phase differences in the final state cannot be independently controlled. As an example, we show that a W state (where all phases are equal) cannot be generated by pairwise exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burkard, G., Loss, D., DiVincenzo, D.P., Smolin, J.A.: Physical optimization of quantum error correction circuits. Phys. Rev. B 60, 11404–11416 (1999). https://doi.org/10.1103/PhysRevB.60.11404

    Article  ADS  Google Scholar 

  2. Boozer, A.D.: Time-optimal synthesis of su(2) transformations for a spin-1/2 system. Phys. Rev. A 85, 012317 (2012). https://doi.org/10.1103/PhysRevA.85.012317

    Article  ADS  Google Scholar 

  3. Geng, J., Wu, Y., Wang, X., Xu, K., Shi, F., Xie, Y., Rong, X., Du, J.: Experimental time-optimal universal control of spin qubits in solids. Phys. Rev. Lett. 117, 170501 (2016). https://doi.org/10.1103/PhysRevLett.117.170501

    Article  ADS  Google Scholar 

  4. van Frank, S., Bonneau, M., Schmiedmayer, J., Hild, S., Gross, C., Cheneau, M., Bloch, I., Pichler, T., Negretti, A., Calarco, T., Montangero, S.: Optimal control of complex atomic quantum systems. Sci. Rep. 6, 34187 (2016). https://doi.org/10.1038/srep34187

    Article  ADS  Google Scholar 

  5. Bukov, M., Day, A.G.R., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Reinforcement learning in different phases of quantum control. Phys. Rev. X 8, 031086 (2018). https://doi.org/10.1103/PhysRevX.8.031086

    Article  Google Scholar 

  6. Day, A.G.R., Bukov, M., Weinberg, P., Mehta, P., Sels, D.: Glassy phase of optimal quantum control. Phys. Rev. Lett. 122, 020601 (2019). https://doi.org/10.1103/PhysRevLett.122.020601

    Article  ADS  Google Scholar 

  7. Tatsuhiko, K.: Quantum brachistochrone. Phil. Trans. R. Soc. A. 380, 20210273 (2022). https://doi.org/10.1098/rsta.2021.0273

    Article  MathSciNet  Google Scholar 

  8. Abdel-Aty, M.: Quantum information entropy and multi-qubit entanglement. Prog. Quant. Electron. 31(1), 1–49 (2007)

    Article  ADS  Google Scholar 

  9. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Tóth, G.: Detection of multipartite entanglement in the vicinity of symmetric dicke states. J. Opt. Soc. Am. B 24(2), 275–282 (2007). https://doi.org/10.1364/JOSAB.24.000275

    Article  ADS  MathSciNet  Google Scholar 

  11. Devi, A.R.U., Prabhu, R., Rajagopal, A.K.: Characterizing multiparticle entanglement in symmetric \(n\)-qubit states via negativity of covariance matrices. Phys. Rev. Lett. 98, 060501 (2007). https://doi.org/10.1103/PhysRevLett.98.060501

    Article  ADS  Google Scholar 

  12. Bengtsson, I., Zyczkowski, K.: A brief introduction to multipartite entanglement (2016)

  13. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000). https://doi.org/10.1103/PhysRevA.62.062314

    Article  ADS  MathSciNet  Google Scholar 

  14. Neven, A., Martin, J., Bastin, T.: Entanglement robustness against particle loss in multiqubit systems. Phys. Rev. A 98, 062335 (2018). https://doi.org/10.1103/PhysRevA.98.062335

    Article  ADS  Google Scholar 

  15. Zou, X., Pahlke, K., Mathis, W.: Generation of an entangled four-photon w state. Phys. Rev. A 66, 044302 (2002). https://doi.org/10.1103/PhysRevA.66.044302

    Article  ADS  Google Scholar 

  16. Biswas, A., Agarwal, G.S.: Preparation of w, ghz, and two-qutrit states using bimodal cavities. J. Mod. Opt. 51(11), 1627–1636 (2004). https://doi.org/10.1080/09500340408232477

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Linington, I.E., Vitanov, N.V.: Decoherence-free preparation of dicke states of trapped ions by collective stimulated raman adiabatic passage. Phys. Rev. A 77, 062327 (2008). https://doi.org/10.1103/PhysRevA.77.062327

    Article  ADS  Google Scholar 

  18. Ye, X.F., Chen, M.F.: Generating w state with qubits of superconducting quantum interference devices via adiabatic passage. Commun. Theor. Phys. 55(5), 868 (2011). https://doi.org/10.1088/0253-6102/55/5/24

    Article  ADS  Google Scholar 

  19. Galiautdinov, A.: Simple protocol for generating w states in resonator-based quantum computing architectures (2012) arXiv:1203.5534

  20. Perez-Leija, A., Hernandez-Herrejon, J.C., Moya-Cessa, H., Szameit, A., Christodoulides, D.N.: Generating photon-encoded \(w\) states in multiport waveguide-array systems. Phys. Rev. A 87, 013842 (2013). https://doi.org/10.1103/PhysRevA.87.013842

    Article  ADS  Google Scholar 

  21. Çakmak, B., Campbell, S., Vacchini, B., Müstecaplıoğlu, O.E., Paternostro, M.: Robust multipartite entanglement generation via a collision model. Phys. Rev. A 99, 012319 (2019). https://doi.org/10.1103/PhysRevA.99.012319

    Article  ADS  Google Scholar 

  22. Sharma, A., Tulapurkar, A.A.: Generation of \(n\)-qubit \(w\) states using spin torque. Phys. Rev. A 101, 062330 (2020). https://doi.org/10.1103/PhysRevA.101.062330

    Article  ADS  Google Scholar 

  23. Cole, D.C., Wu, J.J., Erickson, S.D., Hou, P.Y., Wilson, A.C., Leibfried, D., Reiter, F.: Dissipative preparation of w states in trapped ion systems. New J. Phys. 23(7), 073001 (2021). https://doi.org/10.1088/1367-2630/ac09c8

    Article  ADS  Google Scholar 

  24. Diker, F.: Deterministic construction of arbitrary \(w\) states with quadratically increasing number of two-qubit gates (2022) arXiv:1606.09290

  25. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005). https://doi.org/10.1038/nature04279

    Article  ADS  Google Scholar 

  26. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467(7315), 570–573 (2010). https://doi.org/10.1038/nature09418

    Article  ADS  Google Scholar 

  27. Rao, K.R.K., Kumar, A.: Entanglement in a 3-spin heisenberg-xy chain with nearest-neighbor interactions, simulated in an nmr quantum simulator. Int. J. Quant. Inf. 10(04), 1250039 (2012). https://doi.org/10.1142/S0219749912500396

    Article  MATH  Google Scholar 

  28. Gräfe, M., Heilmann, R., Perez-Leija, A., Keil, R., Dreisow, F., Heinrich, M., Moya-Cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon w-states. Nat. Photon. 8(10), 791–795 (2014). https://doi.org/10.1038/nphoton.2014.204

    Article  ADS  Google Scholar 

  29. Kagalwala, K.H., Di Giuseppe, G., Abouraddy, A.F., Saleh, B.E.A.: Single-photon three-qubit quantum logic using spatial light modulators. Nat. Commun. 8(1), 739 (2017). https://doi.org/10.1038/s41467-017-00580-x

    Article  ADS  Google Scholar 

  30. Cruz, D., Fournier, R., Gremion, F., Jeannerot, A., Komagata, K., Tosic, T., Thiesbrummel, J., Chan, C.L., Macris, N., Dupertuis, M.A., Javerzac-Galy, C.: Efficient quantum algorithms for ghz and w states, and implementation on the ibm quantum computer. Adv. Quant. Technol. 2(5–6), 1900015 (2019). https://doi.org/10.1002/qute.201900015

    Article  Google Scholar 

  31. Russ, L., DeVoogt, A.: The Complete Mancala Games Book: How To Play the World’s Oldest Board Games (Da Capo Press) (1999) https://books.google.ca/books?id=BA9yHQAACAAJ

  32. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). https://doi.org/10.1103/PhysRevA.57.120

    Article  ADS  Google Scholar 

  33. Anderlini, M., Lee, P.J., Brown, B.L., Sebby-Strabley, J., Phillips, W.D., Porto, J.V.: Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448(7152), 452–456 (2007). https://doi.org/10.1038/nature06011

    Article  ADS  Google Scholar 

  34. Kaufman, A.M., Lester, B.J., Foss-Feig, M., Wall, M.L., Rey, A.M., Regal, C.A.: Entangling two transportable neutral atoms via local spin exchange. Nature 527(7577), 208–211 (2015). https://doi.org/10.1038/nature16073

    Article  ADS  Google Scholar 

  35. Jensen, J.H.M., Sørensen, J.J., Mølmer, K., Sherson, J.F.: Time-optimal control of collisional \(\sqrt{\rm swap }\) gates in ultracold atomic systems. Phys. Rev. A 100, 052314 (2019). https://doi.org/10.1103/PhysRevA.100.052314

    Article  ADS  Google Scholar 

  36. Nemirovsky, J., Sagi, Y.: Fast universal two-qubit gate for neutral fermionic atoms in optical tweezers. Phys. Rev. Res. 3, 013113 (2021). https://doi.org/10.1103/PhysRevResearch.3.013113

    Article  Google Scholar 

  37. Hayes, D., Julienne, P.S., Deutsch, I.H.: Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007). https://doi.org/10.1103/PhysRevLett.98.070501

    Article  ADS  Google Scholar 

  38. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180–2184 (2005). https://doi.org/10.1126/science.1116955

    Article  ADS  Google Scholar 

  39. Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schmitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481(7381), 344–347 (2012). https://doi.org/10.1038/nature10707

    Article  ADS  Google Scholar 

  40. Kandel, Y.P., Qiao, H., Nichol, J.M.: Perspective on exchange-coupled quantum-dot spin chains. Appl. Phys. Lett. 119(3), 030501 (2021). https://doi.org/10.1063/5.0055908

    Article  ADS  Google Scholar 

  41. van Woerkom, D.J., Scarlino, P., Ungerer, J.H., Müller, C., Koski, J.V., Landig, A.J., Reichl, C., Wegscheider, W., Ihn, T., Ensslin, K., Wallraff, A.: Microwave photon-mediated interactions between semiconductor qubits. Phys. Rev. X 8, 041018 (2018). https://doi.org/10.1103/PhysRevX.8.041018

    Article  Google Scholar 

  42. Davis, P., Gautschi, W., Iserles, A.: Spirals: From Theodorus to Chaos. Taylor & Francis (1993)

    Google Scholar 

  43. Gronau, D.: The spiral of Theodorus. Am. Math. Month. 111(3), 230–237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hlawka, E.: Gleichverteilung und quadratwurzelschnecke. Monatshefte für Mathematik 89(1), 19–44 (1980). https://doi.org/10.1007/BF01571563

    Article  MathSciNet  MATH  Google Scholar 

  45. Landig, A.J., Koski, J.V., Scarlino, P., Müller, C., Abadillo-Uriel, J.C., Kratochwil, B., Reichl, C., Wegscheider, W., Coppersmith, S.N., Friesen, M., Wallraff, A., Ihn, T., Ensslin, K.: Virtual-photon-mediated spin-qubit-transmon coupling. Nat. Commun. 10(1), 5037 (2019). https://doi.org/10.1038/s41467-019-13000-z

    Article  ADS  Google Scholar 

  46. Borjans, F., Croot, X.G., Mi, X., Gullans, M.J., Petta, J.R.: Resonant microwave-mediated interactions between distant electron spins. Nature 577(7789), 195–198 (2020). https://doi.org/10.1038/s41586-019-1867-y

    Article  ADS  Google Scholar 

  47. Kandel, Y.P., Qiao, H., Fallahi, S., Gardner, G.C., Manfra, M.J., Nichol, J.M.: Coherent spin-state transfer via heisenberg exchange. Nature 573(7775), 553–557 (2019). https://doi.org/10.1038/s41586-019-1566-8

    Article  ADS  Google Scholar 

  48. Ferrón, A., Serra, P., Osenda, O.: Understanding the propagation of excitations in quantum spin chains with different kind of interactions. Phys. Script. 97(11), 115103 (2022). https://doi.org/10.1088/1402-4896/ac955c

    Article  ADS  Google Scholar 

  49. Sägesser, T., Matt, R., Oswald, R., Home, J.P.: Robust dynamical exchange cooling with trapped ions. New J. Phys. 22(7), 073069 (2020). https://doi.org/10.1088/1367-2630/ab9e32

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Jean-Sébastien Bernier and G. Baskaran for insightful discussions. RG was supported by Discovery Grant 2022-05240 from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ganesh.

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analysed during the current study. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theerthagiri, L., Ganesh, R. Spreading entanglement through pairwise exchange interactions. Quantum Inf Process 22, 355 (2023). https://doi.org/10.1007/s11128-023-04104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04104-z

Keywords

Navigation