Skip to main content
Log in

Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the behaviour of the second-order correlation function in a double-cavity optomechanical system, and a degenerate optical parametric amplifier is placed in each cavity. The first cavity is additionally driven by a weak classical laser field. The occurrence of strong photon antibunching effect in these two coupled cavities is observed. For suitable values of optomechanical coupling strength as well as photon hopping process, the system can exhibit a very strong photon antibunching effect. Our study also shows that the unconventional photon blockade occurs in both coupling, i.e. the weak coupling and the strong coupling regimes as compared to the conventional photon blockade which occurs only in the strong coupling regime. We get a very strong photon antibunching effect under the unconventional photon blockade mechanism than the conventional photon blockade mechanism. Our study can be also used for the generation of single photon in coupled nonlinear optomechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data used during this study are available within the article.

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  2. Xiong, H., Si, L.G.: Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1 (2015)

    Google Scholar 

  3. Amazioug, M., Maroufi, B., Daoud, M.: Using coherent feedback loop for high quantum state transfer in optomechanics. Phys. Lett. A 384, 126705 (2020)

    MathSciNet  Google Scholar 

  4. Amazioug, M., Maroufi, B., Daoud, M.: Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Process. 19, 16 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Amazioug, M., Maroufi, B., Daoud, M.: Creating mirror–mirror quantum correlations in optomechanics. Eur. Phys. J. D 74, 9 (2020)

    MATH  Google Scholar 

  6. Asjad, M., Tombesi, P., Vitali, D.: Quantum phase gate for optical qubits with cavity quantum optomechanics. Opt. Express 23, 7786 (2015)

    ADS  Google Scholar 

  7. Singh, S.K., Peng, J., Asjad, M., Mazaheri, M.: Entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B 54, 215502 (2021)

    ADS  Google Scholar 

  8. Amazioug, M., Nassik, M., Habiballah, N.: Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. Eur. Phys. J. D 72, 9 (2018)

    MATH  Google Scholar 

  9. Teklu, B., Byrnes, T., Khan, F.: Cavity-induced mirror–mirror entanglement in a single-atom Raman laser. Phys. Rev. A 97, 023829 (2018)

    ADS  Google Scholar 

  10. Asjad, M., Shahzad, M.A., Saif, F.: Quantum degenerate Fermi gas entanglement in optomechanics. Eur. Phys. J. D 67, 1 (2013)

    Google Scholar 

  11. Mazaheri, M., Jamasb, S.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. Quantum Inf. Process. 19, 1 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Gebremariam, T., Mazaheri, M., Zeng, Y., Li, C.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. JOSA B 36, 168 (2019)

    ADS  Google Scholar 

  13. Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017)

    ADS  Google Scholar 

  14. Motazedifard, A., Bemani, F., Naderi, M., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18, 073040 (2016)

    ADS  Google Scholar 

  15. Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Khalid, M., Asjad, M.: Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Front. Phys. 11, 1142452 (2023)

    Google Scholar 

  16. Ghobadi, R., Gholizadeh, S., Mazaheri, M.: Weak force measurement in bistable optomechanical system. Int. J. Opt. Photon. 9, 19 (2015)

    Google Scholar 

  17. Gebremariam, T., Zeng, Y.X., Mazaheri, M., Li, C.: Enhancing optomechanical force sensing via precooling and quantum noise cancellation. Sci. China Phys. Mech. Astron. 63, 1 (2020)

    Google Scholar 

  18. Collett, M.J., Walls, D.F.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887 (1985)

    ADS  Google Scholar 

  19. Kundu, A., Singh, S.K.: Heisenberg–Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Wang, Q.: Precision temperature measurement with optomechanically induced transparency in an optomechanical system. Laser Phys. 28, 075201 (2018)

    ADS  Google Scholar 

  21. Asjad, M., Zippilli, S., Tombesi, P., Vitali, D.: Large distance continuous variable communication with concatenated swaps. Phys. Scr. 90, 074055 (2015)

    ADS  Google Scholar 

  22. Asjad, M., Qasymeh, M., Eleuch, H.: A local area quantum teleportation network based on an array of electrically activated graphene waveguides. Opt. Express 30, 21016 (2022)

    ADS  Google Scholar 

  23. Weis, S., Rivilere, R., Delleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    ADS  Google Scholar 

  24. Asjad, M.: Electromagnetically-induced transparency in optomechanical systems with Bose–Einstein condensate. J. Russ. Laser Res. 34, 159 (2013)

    Google Scholar 

  25. Singh, S.K., Parvez, M., Abbas, T., Peng, Jia-Xin., Mazaheri, M., Asjad, M.: Tunable optical response and fast (slow) light in optomechanical system with phonon pump. Phys. Lett. A 442, 128181 (2022)

    MATH  Google Scholar 

  26. Singh, S.K., Asjad, M., Raymond Ooi, C.H.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21, 18 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Qu, Kenan, Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802 (2013)

    ADS  Google Scholar 

  28. Asjad, M.: Optomechanically dark state in hybrid BEC-optomechanical systems. J. Russ. Laser Res. 34, 278 (2013)

    Google Scholar 

  29. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Strong photon antibunching effect in a double cavity optomechanical system with squeezed driving. Phys. Rev. Lett. 99, 093901 (2006)

    ADS  Google Scholar 

  30. Asjad, M., Zippilli, S., Vitali, D.: Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Phys. Rev. A 94, 051801 (2016)

    ADS  Google Scholar 

  31. Rossi, M., Kralj, N., Zippilli, S., Natali, R., Borrielli, A., Pandraud, G., Serra, E., Di, G., Giuseppe, Vitali, D.: Enhancing sideband cooling by feedback-controlled light. Phys. Rev. Lett. 119, 123603 (2017)

    ADS  Google Scholar 

  32. Asjad, M.: Cavity optomechanics with a Bose–Einstein condensate: normal mode splitting. J. Mod. Opt. 59, 917 (2012)

    ADS  Google Scholar 

  33. Asjad, M., Saif, F.: Normal mode splitting in hybrid BEC-optomechanical system. Optik 125, 5455 (2014)

    ADS  Google Scholar 

  34. Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Gu, Z., Asjad, M.: Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Inf. Process. 22, 198 (2023)

    MathSciNet  MATH  ADS  Google Scholar 

  35. Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)

    ADS  Google Scholar 

  36. Liao, J.-Q., Nori, F.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)

    ADS  Google Scholar 

  37. Singh, S.K., Muniandy, S.V.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Int. J. Theor. Phys. 55, 287 (2016)

    MATH  Google Scholar 

  38. Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014)

    ADS  Google Scholar 

  39. Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    ADS  Google Scholar 

  40. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)

    ADS  Google Scholar 

  41. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    ADS  Google Scholar 

  42. Grunwald, P., Singh, S.K., Vogel, W.: Raman-assisted Rabi resonances in two-mode cavity QED. Phys. Rev. A 83, 063806 (2011)

    ADS  Google Scholar 

  43. Singh, S.K.: Quantum dynamics and nonclassical photon statistics of coherently driven Raman transition in bimodal cavity. J. Mod. Opt. 66, 562 (2019)

    ADS  Google Scholar 

  44. Singh, S.K.: Optical feedback-induced dynamics and nonclassical photon statistics of semiconductor microcavity laser. Appl. Phys. B 127, 90 (2021)

    ADS  Google Scholar 

  45. Liao, J.-Q., Law, C.K.: Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)

    ADS  Google Scholar 

  46. Ghosh, S., Liew, T.C.H.: Dynamical blockade in a single-mode bosonic system. Phys. Rev. Lett. 123, 013602 (2019)

    ADS  Google Scholar 

  47. Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)

    ADS  Google Scholar 

  48. Zhu, G.-L., Lü, X.-Y., Wan, L.-L., Yin, T.-S., Bin, Q., Wu, Y.: Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. Phys. Rev. A 97, 033830 (2018)

    ADS  Google Scholar 

  49. Zou, F., Fan, L.-B., Huang, J.-F., Liao, J.-Q.: Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A 99, 043837 (2019)

    ADS  Google Scholar 

  50. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005)

    ADS  Google Scholar 

  51. Faraon, A., Fushman, I., Englund, D., Stoltz, D.N., Petroff, P., Vuckovic, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)

    Google Scholar 

  52. Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K.J., Hu, E.L., Imamoglu, A.: Strongly correlated photons on a chip. Nat. Photon. 6, 93 (2012)

    ADS  Google Scholar 

  53. Muller, K., Rundquist, A., Fischer, K.A., Sarmiento, T., Lagoudakis, K.G., Kelaita, Y.A., Sanchez Munoz, C., del Valle, E., Laussy, E.P., Vuckovic, J.: Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015)

    ADS  Google Scholar 

  54. Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)

    ADS  Google Scholar 

  55. Bamba, M., Imamoglu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)

    ADS  Google Scholar 

  56. Bajcsy, M., Majumdar, A., Rundquist, A., Vuckovic, J.: Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New J. Phys. 15, 025014 (2013)

    ADS  Google Scholar 

  57. Leonski, W., Tanas, R.: Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)

    ADS  Google Scholar 

  58. Tian, L., Carmichael, H.J.: Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)

    ADS  Google Scholar 

  59. Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)

    ADS  Google Scholar 

  60. Snijders, H.J.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)

    ADS  Google Scholar 

  61. Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Esteve, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)

    ADS  Google Scholar 

  62. Shen, S., Qu, Y., Li, J., Wu, Y.: Tunable photon statistics in parametrically amplified photonic molecules. Phys. Rev. A 100(2), 023814 (2019)

    ADS  Google Scholar 

  63. Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. 22, 093006 (2020)

    ADS  Google Scholar 

  64. Zou, F., Lai, D.G., Liao, J.Q.: Enhancement of photon blockade effect via quantum interference. Opt. Express 28, 16175–16190 (2020)

    ADS  Google Scholar 

  65. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A 91, 063808 (2015)

    ADS  Google Scholar 

  66. Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017)

    ADS  Google Scholar 

  67. Liu, J.S., Yang, J.Y., Liu, H.Y., Zhu, A.D.: Photon blockade by enhancing coupling via a nonlinear medium. Opt. Express 28, 18397–18406 (2020)

    ADS  Google Scholar 

  68. Shen, H.Z., Zhou, Y.H., Liu, H.D., Wang, G.C., Yi, X.X.: Exact optimal control of photon blockade with weakly nonlinear coupled cavities. Opt. Express 23, 32835–32858 (2015)

    ADS  Google Scholar 

  69. Zhou, Y.H., Shen, H.Z., Shao, X.Q., Yi, X.X.: Strong photon antibunching with weak second-order nonlinearity under dissipation and coherent driving. Opt. Express 24, 17332–17344 (2016)

    ADS  Google Scholar 

  70. Hu, C.S., Huang, X.R., Shen, L.T., Yang, Z.B., Wu, H.Z.: Enhancement of entanglement in distant micromechanical mirrors using parametric interactions. Eur. Phys. J. D 71, 24 (2017)

    ADS  Google Scholar 

  71. Hu, C.S., Shen, L.T., Yang, Z.B., Wu, H., Li, Y., Zheng, S.B.: Manifestation of classical nonlinear dynamics in optomechanical entanglement with a parametric amplifier. Phys. Rev. A 100, 043824 (2019)

    ADS  Google Scholar 

  72. Amazioug, M., Daoud, M.: Measure and control of quantum correlations in optomechanics. Eur. Phys. J. D 75, 178 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

M. Asjad has been supported by the Khalifa University of Science and Technology under Award No. FSU-2023-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Ethics declarations

Conflict of interest:

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amazioug, M., Daoud, M., Singh, S.K. et al. Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light. Quantum Inf Process 22, 301 (2023). https://doi.org/10.1007/s11128-023-04052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04052-8

Keywords

Navigation