Skip to main content
Log in

Design of quantum error correcting code for biased error on heavy-hexagon structure

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Surface code is an error-correcting method that can be applied to the implementation of a usable quantum computer. At present, a promising candidate for a usable quantum computer is based on superconductor-specifically transmon. Because errors in transmon-based quantum computers appear biasedly as Z type errors, tailored surface and XZZX codes have been developed to deal with the type errors. Even though these surface codes have been suggested for lattice structures, since transmons-based quantum computers, developed by IBM, have a heavy-hexagon structure, it is natural to ask how tailored surface code and XZZX code can be implemented on the heavy-hexagon structure. In this study, we provide a method for implementing tailored surface code and XZZX code on a heavy-hexagon structure. Even when there is no bias, we obtain \( 0.231 \%\) as the threshold of the tailored surface code, which is much better than \( 0.21 \%\) and \( 0.209 \%\) as the thresholds of the surface code and XZZX code, respectively. Furthermore, we can see that even though a decoder, which is not the best of the syndromes, is used, the thresholds of the tailored surface code and XZZX code increase as the bias of the Z error increases. Finally, we show that in the case of infinite bias, the threshold of the surface code is \( 0.264\%\), but the thresholds of the tailored surface code and XZZX code are \( 0.296 \% \) and \( 0.328 \%\) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a Haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  3. Bae, J., Kwon, Y.: Generalized quantum search Hamiltonian. Phys. Rev. A 66, 012314 (2002)

    Article  ADS  Google Scholar 

  4. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  5. Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226 (2019)

    Article  ADS  Google Scholar 

  6. Bravyi, S., et al.: Correcting coherent errors with surface codes. NPJ Quantum Inf. 4(1), 1–6 (2018)

    Article  MathSciNet  Google Scholar 

  7. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    Article  ADS  Google Scholar 

  8. Kitaev, A.Y.: Fault-tolerant quantum computation by Anyons. Ann. Phys. 303, 2–30 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gottesman, D.E., Preskill, J.P.: Stabilizer Codes and Quantum Error Correction. California Institute of Technology, Pasadena, CA (1997)

    Google Scholar 

  10. Acharya, R. et al.: Suppressing quantum errors by scaling a surface code logical qubit. arXiv preprint arXiv:2207.06431 (2022)

  11. Sheldon, S., Magesan, E., Chow, J.M., Gambetta, J.M.: Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A. 93, 060302 (2016)

    Article  ADS  Google Scholar 

  12. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  13. Takita, M., Cross, A.W., Córcoles, A.D., Chow, J.M., Gambetta, J.M.: Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017)

    Article  ADS  Google Scholar 

  14. Córcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015)

    Article  ADS  Google Scholar 

  15. Krinner, S., Lacroix, N., Remm, A., Di Paolo, A., Genois, E., Leroux, C., Hellings, C., Lazar, S., Swiadek, F., Herrmann, J., Norris, G.J., Andersen, C.K., Müller, M., Blais, A., Eichler, C., Wallraff, A.: Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022)

    Article  ADS  Google Scholar 

  16. Ioffe, L., Mézard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75, 032345 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Aliferis, P., Preskill, J.: Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008)

    Article  ADS  Google Scholar 

  18. Azad, U., Lipińska, A., Mahato, S., Sachdeva, R., Bhoumik, D., Majumdar, R.: Surface code design for asymmetric error channels. IET Quantum Commun. 3, 174 (2022)

    Article  Google Scholar 

  19. Tuckett, D.K., Bartlett, S.D., Flammia, S.T.: Ultrahigh error threshold for surface codes with biased noise. Phys. Rev. Lett. 120, 050505 (2018)

    Article  ADS  Google Scholar 

  20. Tuckett, D.K., Bartlett, S.D., Flammia, S.T., Brown, B.J.: Fault-tolerant thresholds for the surface code in excess of \( 5 \% \) under biased noise. Phys. Rev. Lett. 124(13), 130501 (2020)

    Article  ADS  Google Scholar 

  21. Higgott, O. et al.: Fragile boundaries of tailored surface codes. arXiv preprint arXiv:2203.04948, (2022)

  22. Bonilla Ataides, J.P., Tuckett, D.K., Bartlett, S.D., Flammia, S.T., Brown, B.J.: The XZZX surface code. Nat. Commun. 12, 2172 (2021)

    Article  ADS  Google Scholar 

  23. Darmawan, A.S., Brown, B.J., Grimsmo, A.L., Tuckett, D.K., Puri, S.: Practical quantum error correction with the XZZX code and Kerr-cat qubits. PRX Quantum 2, 030345 (2021)

    Article  ADS  Google Scholar 

  24. Zhang, E.J., Srinivasan, S., Sundaresan, N., Bogorin, D.F., Martin, Y., Hertzberg, J.B., Timmerwilke, J., Pritchett, E.J., Yau, J.-B., Wang, C., Landers, W., Lewandowski, E.P., Narasgond, A., Rosenblatt, S., Keefe, G.A., Lauer, I., Rothwell, M.B., McClure, D.T., Dial, O.E., Orcutt, J.S., Brink, M., Chow, J.M.: High-performance superconducting quantum processors via laser annealing of transmon qubits. Sci. Adv. 8, eabi6690 (2022)

    Article  Google Scholar 

  25. Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. NPJ Quantum Inf. 4, 42 (2018)

    Article  ADS  Google Scholar 

  26. Lao, L., Almudever, C.G.: Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits. Phys. Rev. A 101, 032333 (2020)

    Article  ADS  Google Scholar 

  27. Chao, R., Reichardt, B.W.: Flag fault-tolerant error correction for any stabilizer code. PRX Quantum 1, 010302 (2020)

    Article  Google Scholar 

  28. Chamberland, C., Zhu, G., Yoder, T.J., Hertzberg, J.B., Cross, A.W.: Topological and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X 10, 011022 (2020)

    Google Scholar 

  29. Wu, A., Li, G., Zhang, H., Guerreschi, GG., Ding, Y., Xie, Y.: Mapping surface code to superconducting quantum processors. arXiv preprint arXiv:2111.13729 (2021)

  30. Gidney, C.: Stim: a fast stabilizer circuit simulator. Quantum 5, 497 (2021)

    Article  Google Scholar 

  31. Higgott, O.: Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching. ACM Trans Quantum Comput. 3, 1–16 (2022)

    Article  MathSciNet  Google Scholar 

  32. Gidney, C., Newman, M.: Benchmarking the planar honeycomb code. arXiv preprint arXiv:2202.11845, (2022)

Download references

Acknowledgements

This work is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF2018R1D1A1B07049420 and NRF2022R1F1A1064459) ) and Creation of the Quantum Information Science RD Ecosystem (Grant No. 2022M3H3A106307411) through the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science and ICT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Measurement circuit of Z stabilizer on heavy-hexagon structure

Appendix A: Measurement circuit of Z stabilizer on heavy-hexagon structure

Fig. 11
figure 11

Z Stabilizer using six flag qubits in the heavy-hexagon structure. a Connection among qubits. b Measurement circuit. The blue dots denote data qubits, and the red dots denote flag qubits. H is a syndrome qubit. For a measurement of the Z syndrome, the quantum states of the syndrome qubits (flag qubits) are prepared as \(|{+}\rangle \)(\(|{0}\rangle \))

To construct a surface code in a heavy-hexagon structure, the measurement circuits of the X and Z stabilizers should be built. Because the measurement circuits of the X stabilizer are discussed in the main text, in the Appendix, we explain the measurement circuits of the Z stabilizer.

Figure 11 shows the assignment of qubits and gates to construct a measurement circuit for the Z syndrome in the heavy-hexagon structure. In the measurement circuit of the Z stabilizer, the X error is passed to the flag qubit through CNOT operator to evaluate the parity of the X error of the data qubit.

The parity of the X error, which passed through the flag qubit to the syndrome qubit, is checked in the syndrome qubit. It should be noted that the quantum state of the flag qubits should be prepared as \(|{0}\rangle \) and applied Hadamard operators, in order for the X error of the data qubit not to affect a flag qubit. The quantum state of the syndrome qubit is prepared as \(|{+}\rangle \), to check the parity of the X error. In addition, in the measurement circuit of the Z stabilizer the CNOT operator is constructed using the flag qubit adjacent to a data qubit as the target qubit and the flag qubit adjacent to the syndrome qubit as the control qubit. The CNOT gate between a data qubit and a flag qubit is built using the data qubit as the control qubit and the flag qubit as the target qubit.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kang, J. & Kwon, Y. Design of quantum error correcting code for biased error on heavy-hexagon structure. Quantum Inf Process 22, 230 (2023). https://doi.org/10.1007/s11128-023-03979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03979-2

Navigation