Skip to main content
Log in

Generalized uncertainty relation between thermodynamic variables in quantum thermodynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Macroscopic thermodynamics, via the weak coupling approximation, assumes that the equilibrium properties of a system are not affected by interactions with its environment. However, this assumption may not hold for quantum systems, where the strength of interaction between the system and the environment may become non-negligible in a strong coupling regime. In such a regime, the equilibrium properties of the system depend on the interaction energy and the system state is no longer of the Gibbs form. Regarding such interactions, using tools from the quantum estimation theory, we derive the thermodynamic uncertainty relation between intensive and extensive variables valid at all coupling regimes through the generalized Gibbs ensemble. Where we demonstrate the lower bound on the uncertainty of intensive variables increases in presence of quantum fluctuations. Also, we calculate the general uncertainty relations for several ensembles to corroborate the literature results, thus showing the versatility of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Hänggi, P., Talkner, P.: The other QFT. Nat. Phys. 11, 108 (2015)

    Google Scholar 

  2. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Attard, P.: Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation. Elsevier Science, Amsterdam (2002)

    Google Scholar 

  4. Tuckerman, M.: Statistical Mechanics: Theory and Molecular Simulation. Oxford Graduate Texts, OUP Oxford, Oxford (2010)

    MATH  Google Scholar 

  5. Zia, R.K.P., Redish, E.F., McKay, S.R.: Making sense of the Legendre transform. Am. J. Phys. 77, 614 (2009)

    ADS  Google Scholar 

  6. Marzolino, U.: \(\mu PT\) statistical ensemble: systems with fluctuating energy, particle number, and volume. Sci. Rep. 11(1), 15096 (2021)

    ADS  Google Scholar 

  7. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, Hoboken (1985)

    MATH  Google Scholar 

  8. Amaku, M., CoutinhoL, F.A.B., Oliveira, N.: Thermodynamic potentials and natural variables. Rev. Bras. Ensino Fís 42, 15243 (2019)

    Google Scholar 

  9. Subaşı, Y., Fleming, C.H., Taylor, J.M., Hu, B.L.: Equilibrium states of open quantum systems in the strong coupling regime. Phys. Rev. E 86, 061132 (2012)

    ADS  Google Scholar 

  10. Philbin, T.G., Anders, J.: Thermal energies of classical and quantum damped oscillators coupled to reservoirs. J. Phys. A Math. Theoret. 49, 215303 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7, 011008 (2017)

    Google Scholar 

  12. Strasberg, P., Esposito, M.: Stochastic thermodynamics in the strong coupling regime: an unambiguous approach based on coarse graining. Phys. Rev. E 95, 062101 (2017)

    ADS  Google Scholar 

  13. Seifert, U.: First and second law of thermodynamics at strong coupling. Phys. Rev. Lett. 116, 020601 (2016)

    ADS  Google Scholar 

  14. Miller, H.J., Anders, J.: Entropy production and time asymmetry in the presence of strong interactions. Phys. Rev. E 95, 062123 (2017)

    ADS  Google Scholar 

  15. Miller, H.J., Anders, J.: Energy-temperature uncertainty relation in quantum thermodynamics. Nat. Commun. 9, 1 (2018)

    ADS  Google Scholar 

  16. Vidmar, L., Rigol, M.: Generalized Gibbs ensemble in integrable lattice models. J. Stat. Mech. Theoret. Exp. 2016, 064007 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Foini, L., Gambassi, A., Konik, R., Cugliandolo, L.F.: Measuring effective temperatures in a generalized Gibbs ensemble. Phys. Rev. E 95, 052116 (2017)

    ADS  Google Scholar 

  18. Fukai, K., Nozawa, Y., Kawahara, K., Ikeda, T.N.: Noncommutative generalized Gibbs ensemble in isolated integrable quantum systems. Phys. Rev. Res. 2, 033403 (2020)

    Google Scholar 

  19. Swendsen, R.H.: Continuity of the entropy of macroscopic quantum systems. Phys. Rev. E 92, 052110 (2015)

    ADS  Google Scholar 

  20. R. H. Swendsen, Resolving the debate about proposed expressions for the classical entropy. arXiv:1702.05810 (2017)

  21. Swendsen, R.H.: Thermodynamics, statistical mechanics and entropy. Entropy 19, 603 (2017)

    ADS  Google Scholar 

  22. Zhang, L.-M., Gao, T., Yan, F.-L.: Tighter uncertainty relations based on Wigner-Yanase skew information for observables and channels. Phys. Lett. A 387, 127029 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Takagi, R.: Skew informations from an operational view via resource theory of asymmetry. Sci. Rep. 9, 1 (2019)

    Google Scholar 

  24. Pires, D.P., Smerzi, A., Macrì, T.: Relating relative Rényi entropies and Wigner-Yanase-Dyson skew information to generalized multiple quantum coherences. Phys. Rev. A 102, 012429 (2020)

    ADS  MathSciNet  Google Scholar 

  25. Luo, S.: Wigner-Yanase Skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    ADS  Google Scholar 

  26. Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)

    ADS  Google Scholar 

  27. Frérot, I., Roscilde, T.: Quantum variance: a measure of quantum coherence and quantum correlations for many-body systems. Phys. Rev. B 94, 075121 (2016)

    ADS  Google Scholar 

  28. Luo, S.: Wigner-Yanase skew information versus quantum Fisher information. Proc. Am. Math. Soc. 132, 885 (2004)

    MATH  Google Scholar 

  29. Luo, S., Fu, S., Oh, C.H.: Quantifying correlations via the Wigner–Yanase skew information. Phys. Rev. A 85, 032117 (2012)

    ADS  Google Scholar 

  30. Luo, S.: Brukner–Zeilinger invariant information. Theoret. Math. Phys. 151, 693 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    ADS  Google Scholar 

  32. Sun, Y., Mao, Y., Luo, S.: From quantum coherence to quantum correlations. EPL 118, 60007 (2017)

    ADS  Google Scholar 

  33. Luo, S., Zhang, Y.: Quantifying nonclassicality via Wigner–Yanase skew information. Phys. Rev. A 100, 032116 (2019)

    ADS  MathSciNet  Google Scholar 

  34. Marvian, I., Spekkens, R.W., Zanardi, P.: Quantum speed limits, coherence, and asymmetry. Phys. Rev. A 93, 052331 (2016)

    ADS  Google Scholar 

  35. Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98, 012113 (2018)

    ADS  Google Scholar 

  36. Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    ADS  MathSciNet  Google Scholar 

  37. Fanchini, F.F., Pinto, D.D.O.S., Adesso, G.: Lectures on General Quantum Correlations and Their Applications. Springer, Cham (2017)

    MATH  Google Scholar 

  38. Cavina, V., Mancino, L., De Pasquale, A., Gianani, I., Sbroscia, M., Booth, R.I., Roccia, E., Raimondi, R., Giovannetti, V., Barbieri, M.: Bridging thermodynamics and metrology in nonequilibrium quantum thermometry. Phys. Rev. A 98, 050101 (2018)

    ADS  Google Scholar 

  39. Liu, J., Yuan, H., Lu, X.-M., Wang, X.: Quantum Fisher information matrix and multiparameter estimation. J. Phys. A: Math. Theoret. 53, 023001 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    ADS  Google Scholar 

  41. Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)

    Google Scholar 

  42. Hayashi, M.: Quantum Information Theory. Springer, New York (2016)

    Google Scholar 

  43. Fiderer, L.J., Fraïsse, J.M.E., Braun, D.: Maximal quantum fisher information for mixed states. Phys. Rev. Lett. 123, 250502 (2019)

    ADS  MathSciNet  Google Scholar 

  44. Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. Theoret. Exp. 2004, P09005 (2004)

    MATH  Google Scholar 

  45. Hilt, S., Thomas, B., Lutz, E.: Hamiltonian of mean force for damped quantum systems. Phys. Rev. E 84, 31110 (2011)

    ADS  Google Scholar 

  46. Wachsmuth, G.: On LICQ and the uniqueness of Lagrange multipliers. Oper. Res. Lett. 41, 78 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Yunger-Halpern, N., Faist, P., Oppenheim, J., Winter, A.: Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges. Nat. Commun. 7, 1 (2016)

    Google Scholar 

  48. Yunger-Halpern, N., Beverland, M.E., Kalev, A.: Noncommuting conserved charges in quantum many-body thermalization. Phys. Rev. E 101, 042117 (2020)

    ADS  Google Scholar 

  49. Jiang, Z.: Quantum Fisher information for states in exponential form. Phys. Rev. A 89, 032128 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Partition function

The generalized Gibbs ensemble (GGE) is given by [16,17,18]

$$\begin{aligned} \rho = \frac{e^{-\sum _i\lambda _iA_i}}{Z(\{\lambda _i\})}~, \end{aligned}$$
(58)

where \([A_i,A_j]=0\) for all ij, and the partition function is

$$\begin{aligned} Z(\{\lambda _i\})=\textrm{tr}\left( e^{-\sum _i \lambda _iA_i}\right) ~, \end{aligned}$$
(59)

a situation in which the ensemble is in thermodynamic equilibrium. It is important to note that

$$\begin{aligned} \langle A_i \rangle&= \textrm{tr}\left( \rho A_i\right) =\frac{1}{Z}\textrm{tr}\left( e^{-\sum _i\lambda _iA_i}A_i\right) \nonumber \\&=-\frac{1}{Z}\frac{\partial }{\partial \lambda _i}\textrm{tr}\left( e^{-\sum _i \lambda _i A_i}\right) ~, \end{aligned}$$
(60)

consequently

$$\begin{aligned} \langle A_i \rangle =-\frac{\partial }{\partial \lambda _i}\ln Z(\{\lambda _i\})=-\frac{1}{Z}\frac{\partial Z}{\partial \lambda _i}~. \end{aligned}$$
(61)

Moreover, the statistical fluctuations for the constants of motion \(A_i\) can be found via the partition function Z as follows

$$\begin{aligned} \frac{\partial ^2 Z}{\partial \lambda _i \, \partial \lambda _j}=\textrm{tr}\left( e^{-\sum _k\lambda _kA_k}A_i A_j\right) ~. \end{aligned}$$
(62)

However, the calculations become easier when Z is replaced by \(\ln Z\) in Eq.  (62), then we have

$$\begin{aligned} \frac{\partial ^2 \ln Z}{\partial \lambda _i \, \partial \lambda _j}&=\frac{\partial }{\partial \lambda _i}\frac{1}{Z}\textrm{tr}\left( e^{-\sum _k\lambda _kA_k}A_j\right) =\frac{1}{Z^2}\frac{\partial Z}{\partial \lambda _i}Z\langle A_j\rangle +\frac{1}{Z}\textrm{tr}\left( e^{-\sum _k\lambda _kA_k}A_iA_j\right) \nonumber \\&=\langle A_iA_j\rangle - \langle A_i\rangle \langle A_j\rangle ~. \end{aligned}$$
(63)

Appendix B. Equilibrium entropy

It is straightforward to obtain the entropy of a system in thermodynamic equilibrium via the partition function in the following path

$$\begin{aligned} \frac{S}{k}=-\langle \ln \rho \rangle&= - \textrm{tr}(\rho \ln \rho )\nonumber \\&=-\textrm{tr}\left\{ \frac{e^{-\sum _i\lambda _iA_i}}{Z}\ln \left( \frac{e^{-\sum _i\lambda _iA_i}}{Z}\right) \right\} \nonumber \\&=\ln Z \,\textrm{tr}\left\{ \frac{e^{-\sum _i\lambda _iA_i}}{Z}\right\} +\sum _i\lambda _i\,\textrm{tr}\left\{ \frac{e^{-\sum _i\lambda _iA_i}}{Z}A_i\right\} \nonumber \\&=\ln Z - \sum _i\lambda _i\frac{\partial }{\partial \lambda _i}\ln Z ~. \end{aligned}$$
(64)

Moreover, one can redefine S from \(\ln Z\) by a Legendre transformation [3,4,5,6]. Let us consider the infinitesimal changes \(d\langle A_i \rangle \) and \(d\lambda _i\) of \(\langle A_i \rangle \) and \(\lambda _i\) in equilibrium, respectively. Accordingly,

$$\begin{aligned} d(\ln Z)= \sum _i\frac{\partial \ln Z}{\partial \lambda _i}d\lambda _i = - \sum _i \langle A_i \rangle d\lambda _i ~, \end{aligned}$$
(65)

and

$$\begin{aligned} \frac{dS}{k}=d(\ln Z) + \sum _id\lambda _i\langle A_i \rangle + \sum _i\lambda _id\langle A_i\rangle ~, \end{aligned}$$
(66)

then subsequently

$$\begin{aligned} dS = k \sum _i\lambda _id\langle A_i \rangle ~. \end{aligned}$$
(67)

It can be seen that Eqs. (65) and (67) capture the natural variables for S and \(\ln Z\). Since S is a function of \(\langle A_i \rangle \), and \(\ln Z\) is also useful as a function of \(\lambda _i\), one can write

$$\begin{aligned} \lambda _i = \frac{1}{k}\frac{\partial S}{\partial \langle A_i\rangle } ~, \end{aligned}$$
(68)

and

$$\begin{aligned} \ln Z = \frac{S}{k} - \frac{1}{k}\sum _i\langle A_i \rangle \frac{\partial S}{\partial \langle A_i \rangle } ~. \end{aligned}$$
(69)

Therefore, \(\lambda _i \) is the conjugate variable of \(\langle A_i \rangle \) concerning S/k, and \(\langle A_i \rangle \) is the conjugate variable of \(\lambda _i\) concerning \(-\ln Z\).

Appendix C. Derivation of Eqs. (14) and (15)

In the context of quantum-enhanced parameter estimation, a suitable measure to determine the ultimate limit of estimation precision is the Cramér-Rao (CR) bound [37,38,39]

$$\begin{aligned} \Delta {\varvec{\theta }}\ge {\frac{1}{\sqrt{n\mathcal {F}(\theta )}}}~, \end{aligned}$$
(70)

with \(\mathcal {F}(\theta )\) being the QFI and \(\theta \) standing for the unknown parameter encoded in the initial state. By considering \(\rho = e^G\) and \(G=-\sum _i\lambda _iA_i - \ln Z\), where \(\lambda _i\) are the Lagrange coefficients, and \(A_i\,|e_j\rangle = a_{ij}\,|e_j\rangle \), we can write the QFI in the following form [41,42,43]

$$\begin{aligned} \mathcal F(\lambda _p)=2\sum _{n,m}\frac{|\langle e_n|\partial _{\lambda _p}\rho |e_m\rangle |^2}{p_n+p_m}~, \end{aligned}$$
(71)

for the desired Lagrange coefficient \(\lambda _p\). Regarding Wilcox’s formula for the derivative of an exponential operator [49]

$$\begin{aligned} \partial _{\lambda _{p}}e^{G} = \int _0^1 e^{\alpha G}\,\partial _{\lambda _{p}}G \,e^{(1-\alpha )G}\,d\alpha ~, \end{aligned}$$
(72)

and spectral decomposition \(\rho =\sum _n p_n |e_n\rangle \langle e_n|\), the QFI becomes

$$\begin{aligned} \mathcal F(\lambda _p)= & {} 2\sum _{n,m}\frac{1}{p_n+p_m}\left| \langle e_n|\int _0^1e^{\alpha G} \partial _{\lambda _p}[G] e^{(1-\alpha )G}|e_m\rangle \right| ^2 \nonumber \\= & {} 2\sum _{n,m}\frac{1}{p_n+p_m}|\langle e_n|\partial _{\lambda _p} [G]|e_m\rangle |^2 \left| \int _0^1e^{\alpha g_n+(1-\alpha )g_m}\right| ^2 \nonumber \\= & {} \sum _{n} \frac{1}{p_n}|\langle e_n|\partial _{\lambda _p}[G]|e_n\rangle |^2 e^{2g_n}\nonumber \\{} & {} \quad +2\sum _{n\ne m}\frac{1}{p_n+p_m}|\langle e_n|\partial _{\lambda _p} [G]|e_m\rangle |^2 \left( \frac{e^{g_m}-e^{g_n}}{g_m-g_n}\right) ^2 ~. \end{aligned}$$
(73)

Here, we have used the fact that \(G\,|e_j\rangle = g_j\,|e_j\rangle \), where \(g_j = - \lambda _{j} a_{j} - \ln Z\). Also, it is substantial to keep the following in mind

$$\begin{aligned} \begin{aligned} \frac{\partial G}{\partial \lambda _p}&=\frac{\partial }{\partial \lambda _p}\left( -\sum _l \lambda _l A_l -\ln Z\right) \\&=\left( -\sum _l\frac{\partial \lambda _l}{\partial \lambda _p}A_l - \frac{\partial \ln Z}{\partial \lambda _p}\right) \\&=-A_p +\langle A_p\rangle =-\delta A_p ~. \end{aligned} \end{aligned}$$
(74)

In the second line of Eq. (74), we assumed that \({\lambda _l}\)’s with \(l\ne p\) and \(A_p\) are independent of \(\lambda _p\). Clearly, this assumption cannot be used for the strong coupling regime in which the energy operator has a dependence on temperature (its own Lagrange coefficient). By rewriting the GGE state in Eq. (9) as

$$\begin{aligned} \rho =\sum _ne^{G}|e_n\rangle \langle e_n|&= \sum _n e^{-\sum _i\lambda _iA_i-\ln Z}|e_n\rangle \langle e_n|\nonumber \\&=\sum _n e^{-\sum _i\lambda _ia_{ni}-\ln Z}|e_n\rangle \langle e_n|\nonumber \\ {}&=\sum _ne^{g_n}|e_n\rangle \langle e_n|=\sum _n p_n|e_n\rangle \langle e_n| ~, \end{aligned}$$
(75)

and substituting \(g_n=\ln (p_n)\) together with Eq. (74) and by regarding \(K_\alpha (\rho ,G)= \textrm{Var}[\rho ,G]=\sum _n\langle e_n| e^G (\delta G)^2 |e_n\rangle \), it turns out that

$$\begin{aligned} \mathcal F(\lambda _p)=\sum _n p_n|\langle e_n|\delta A|e_n\rangle |^2+2\sum _{n\ne m}\frac{(p_m-p_n)^2}{(p_n+p_m)(\ln (p_m/p_n))^2}|\langle e_n|\delta A_p |e_m\rangle |^2 , \end{aligned}$$
(76)

where

$$\langle e_n|\delta A_p |e_m\rangle = a_{pm}\delta _{nm}-\langle A_p \rangle \delta _{nm}~,$$

therefore, one comes to

$$\begin{aligned} \mathcal F(\lambda _p)=\sum _np_n( a_{pn}^2-2a_{pn}\langle A_p\rangle + \langle A_p\rangle ^2) = \sum _n p_n (a_{pn}-\langle A_p\rangle )^2 ~. \end{aligned}$$
(77)

At this point, let us consider the definition of classical uncertainty contribution

$$\begin{aligned} K_\alpha (\rho ,G)= \textrm{Var}(\rho ,G)=\langle (\delta G)^2\rangle = \sum _n\langle e_n| e^G (\delta G)^2 |e_n\rangle ~. \end{aligned}$$
(78)

Var() can be written as

$$\begin{aligned} \textrm{Var}(\rho ,G)&= \sum _{m,n,p}\langle e_n|e^{g_p}|e_p\rangle \langle e_p| \delta G |e_m\rangle \langle e_m|\delta G |e_n \rangle \nonumber \\&=\sum _{m,n}p_n \langle e_n|\delta G \vert e_m\rangle \langle e_m|\delta G|e_n\rangle \nonumber \\&=\sum _n p_n |\langle e_n|\delta G|e_n\rangle |^2 + \sum _{n\ne m}p_n |\langle e_n|\delta G|e_m\rangle |^2 ~, \end{aligned}$$
(79)

where \(\delta G= -\sum _i \lambda _i \delta A_i\), hence

$$\begin{aligned} \textrm{Var}(\rho ,G)&= \sum _{n,i}p_n |\langle e_n | \lambda _i \delta A_i|e_n\rangle |^2 +\sum _{n\ne m,i}p_n |\langle e_n | \lambda _i \delta A_i|e_n\rangle |^2\nonumber \\&=\sum _{n,i}p_n\lambda _i^2(a^2_{ni}-2a_{pn}\langle A_i\rangle +\langle A_i\rangle ^2)\nonumber \\&=\sum _{n,i}p_n \lambda _i^2(a_{ni}-\langle A_i \rangle )^2 ~. \end{aligned}$$
(80)

Appendix D. Derivation of Eq. (22)

According to the previous methods

$$\begin{aligned} \begin{aligned} \mathcal F(\lambda _p)&=\sum _{n,m}\frac{2}{p_n+p_m}\left| \langle e_n|\int _0^1e^{\alpha G^*_S}\partial _{\lambda _p}G^*_S e^{(1-\alpha )G^*_S}|e_m\rangle \right| ^2\\&=\sum _{n,m,l,q}\frac{2}{p_n+p_m}\left| \langle e_n|\int _0^1e^{\alpha g_l}|e_l\rangle \langle e_l|\partial _{\lambda _p}G^*_S e^{(1-\alpha )g_q}|e_q\rangle \langle e_q|e_m\rangle \right| ^2\\&=2\sum _{n,m}\frac{1}{p_n+p_m}|\langle e_n|\partial _{\lambda _p}G^*_S |e_m\rangle |^2\left| \int _0^1e^{\alpha g_n+(1-\alpha )g_m}\right| ^2\\&=\sum _{n} \frac{1}{p_n}|\langle e_n|\partial _{\lambda _p}G^*_S |e_n\rangle |^2 e^{2g_n}\\&+2\sum _{n\ne m}\frac{1}{p_n+p_m}|\langle e_n|\partial _{\lambda _p}G^*_S |e_m\rangle |^2\left( \frac{e^{g_m}-e^{g_n}}{g_m-g_n}\right) ^2 ~, \end{aligned} \end{aligned}$$
(81)

where we have used the fact that \(G^*_S|e_j\rangle = g_j|e_j\rangle \) and

$$\begin{aligned} \begin{aligned} \frac{\partial G^*_S}{\partial \lambda _p}&=\frac{\partial }{\partial \lambda _p}\left( -\sum _i \lambda _i A^*_i -\ln Z^*_S\right) \\&=-\frac{\partial }{\partial \lambda _p}\sum _i\lambda _iA^*_i +\left\langle \frac{\partial }{\partial \lambda _p}\left( \sum _i\lambda _iA^*_i\right) \right\rangle \\&=-E^*_S +\langle E^*_S\rangle =-\delta E^*_S ~. \end{aligned} \end{aligned}$$
(82)

It is also shown that

$$\begin{aligned} \rho _S&=\sum _ne^{G^*_S}|e_n\rangle \langle e_n| = e^{-\sum _i\lambda _iA^*_i-\ln Z^*_S}|e_n\rangle \langle e_n|\nonumber \\&=\sum _n e^{-\sum _i\lambda _ia_{ni}-\ln Z^*_S}|e_n\rangle \langle e_n|=\sum _ne^{g_n}|e_n\rangle \langle e_n|\nonumber \\ {}&=\sum _np_n|e_n\rangle \langle e_n|~. \end{aligned}$$
(83)

Implementing Eqs. (82) and (83) as well as \(g_n=\ln (p_n)\), leads to

$$\begin{aligned} \mathcal F(\lambda _p)=\sum _n p_n|\langle e_n|\delta E^*_S|e_n\rangle |^2+2\sum _{n\ne m}\frac{(p_m-p_n)^2}{(p_n+p_m)(\ln (p_m/p_n))^2}|\langle e_n|\delta E^*_S |e_m\rangle |^2 ~, \end{aligned}$$
(84)

and by applying \(|\langle e_n|\delta E^*_S |e_m\rangle | = |\langle e_n| E^*_S |e_m\rangle |\) for \(n\ne m\), we have

$$\begin{aligned} \mathcal F(\lambda _p)=\sum _n p_n|\langle e_n|\delta E^*_S|e_n\rangle |^2+2\sum _{n\ne m}\frac{(p_m-p_n)^2}{(p_n+p_m)(\ln (p_m/p_n))^2}|\langle e_n| E^*_S |e_m\rangle |^2 ~. \end{aligned}$$
(85)

Given that

$$\begin{aligned} \textrm{Var}(\rho _S,E^*_S)=\langle (\delta E^*_S)^2\rangle = \sum _n\langle e_n|e^{G^*_S}(\delta E^*_S)^2|e_n\rangle ~, \end{aligned}$$
(86)

one obtains

$$\begin{aligned} \begin{aligned} \textrm{Var}(\rho _S,E^*_S)&=\frac{1}{Z_S^*(\{\lambda _i\})}\sum _{m,n,p}\langle e_n|e^{-\sum _i\lambda _ia_{pi}}|e_p\rangle \langle e_p|\delta E^*_S|e_m\rangle \langle e_m|\delta E^*_S |e_n\rangle \\&=\sum _{m,n}p_n\langle e_n|\delta E^*_S|e_m\rangle \langle e_m| \delta E^*_S |e_n\rangle \\&=\sum _n p_n |\langle e_n|\delta E^*_S|e_n\rangle |^2+\sum _{m\ne n}p_n|\langle e_n| E^*_S|e_m\rangle |^2 . \end{aligned} \end{aligned}$$
(87)

Subsequently, the QFI is given as the following form

$$\begin{aligned} \mathcal F(\lambda _p)=\textrm{Var}(\rho _S,E^*_S)+\sum _{n\ne m}\left[ \frac{2(p_m-p_n)^2}{(p_n+p_m)(\ln (p_m/p_n))^2}-p_n\right] |\langle e_n| E^*_S |e_m\rangle |^2 ~. \end{aligned}$$
(88)

Appendix E. Derivation of Eq. (24)

On the one hand, the skew information can be derived in the following way

$$\begin{aligned} Q(\rho _S,E^*_S) = \int _0^1 d\alpha Q_\alpha (\rho _S,E^*_S)=-\frac{1}{2}\int _0^1 d\alpha \textrm{tr}\left\{ [E^*_S,\rho _S^\alpha ][E^*_S,\rho _S^{1-\alpha }]\right\} ~, \end{aligned}$$
(89)

where

$$\begin{aligned} \begin{aligned}&\textrm{tr}\left\{ [{E^*_S},\rho _S^\alpha ][E^*_S,\rho _S^{1-\alpha }]\right\} =\textrm{tr}\left\{ [{E^*_S}\rho _S^\alpha -\rho _S^\alpha E^*_S][E^*_S\rho _{S}^{(1-\alpha )}-\rho _{S}^{(1-\alpha )}E^*_S]\right\} \\&\quad =\textrm{tr}\left\{ E^*_S\rho _S^{\alpha }E^*_S\rho _S^{1-\alpha }\right\} -\textrm{tr}\left\{ E^*_S\rho _S^{\alpha }\rho _S^{1-\alpha }E^*_S\right\} -\textrm{tr}\left\{ \rho _S^{\alpha }E^*_SE^*_S\rho _S^{1-\alpha }\right\} \\&\qquad +\textrm{tr}\left\{ \rho _S^{\alpha }E^*_S\rho _S^{1-\alpha }E^*_S\right\} ~. \end{aligned} \end{aligned}$$

On the other hand, knowing that \(\rho _S^\alpha \rho _S^{1-\alpha }=\rho _S\) and that a trace has the cyclic permutation property, we find

$$\begin{aligned} \textrm{tr}(E^*_S\rho _S^\alpha \rho _S^{1-\alpha }E^*_S)=\textrm{tr}({E^{*}_{S}}^{2}\rho _S) = \langle {E^*_S}^{2} \rangle ~. \end{aligned}$$
(90)

Also, by utilizing this fact

$$\begin{aligned} \textrm{tr}(E^*_S\rho ^{\alpha }_S E^*_S\rho ^{1-\alpha }_S)=\textrm{tr}(\rho _S^\alpha E^*_S\rho _S^{1-\alpha }E^*_S)~, \end{aligned}$$
(91)

we obtain

$$\begin{aligned}{} & {} \int _0^1 d\alpha \,\textrm{tr}(E^*_S\rho _S^\alpha E^*_S\rho _S^{1-\alpha }) =\sum _n\langle e_n|E^*_S \int _0^1 d\alpha \,e^{-G^*_S}E^*_S e^{-(1-\alpha )G^*_S}|e_n\rangle \nonumber \\{} & {} \quad =\sum _{n,m,l}\langle e_n|E^*_S\int _0^1dae^{-\alpha g_m}|e_m\rangle \langle e_m|E^*_S e^{-(1-\alpha )g_l}|e_l\rangle \langle e_l|e_n\rangle \nonumber \\{} & {} \quad =\sum _{n,m}\langle e_n|E^*_S|e_m\rangle \langle e_m|E^*_S|e_n\rangle \int _0^1 d\alpha \,e^{[\alpha g_m+(1-\alpha )g_n]}\nonumber \\{} & {} \quad =\sum _n e^{-g_n}|\langle e_n|E^*_S|e_n\rangle |^2 + \sum _{n\ne m} |\langle e_n|E^*_S|e_m\rangle |^2\left( \frac{e^{g_m}-e^{g_n}}{g_m-g_n}\right) \nonumber \\{} & {} \quad =\sum _n p_n|\langle e_n|E^*_S|e_n\rangle |^2+\sum _{n\ne m} \frac{p_m-p_n}{\ln (p_m/p_n)} |\langle e_n|E^*_S|e_m\rangle |^2 ~, \end{aligned}$$
(92)

hence

$$\begin{aligned}{} & {} Q(\rho _S,E^*_S)= -\frac{1}{2}\left[ 2\sum _n p_n|\langle e_n|E^*_S|e_n\rangle |^2\right] \nonumber \\{} & {} \quad -\frac{1}{2}\left[ 2\sum _{n\ne m}\frac{p_m-p_n}{\ln (p_m/p_n)} \langle e_n|E^*_S|e_m\rangle |^2 - 2\langle {E^{*}_{S}}^2\rangle \right] ~. \end{aligned}$$
(93)

One can translate \(\langle {E^{*}_{S}}^2\rangle \) by

$$\begin{aligned} \langle {E^{*}_{S}}^2\rangle&= \sum _{n,m,l} \langle e_l|e^{g_n}|e_n\rangle \langle e_n |E^*_S|e_m\rangle \langle e_m |E^*_S|e_n\rangle \nonumber \\&=\sum _{n,m}p_n|\langle e_n |E^*_S|e_m\rangle |^2\nonumber \\&=\sum _{n}p_n|\langle e_n|E^*_S|e_n\rangle |^2 +\sum _{n\ne m}p_n|\langle e_n|E^*_S|e_m\rangle |^2 ~. \end{aligned}$$
(94)

Therefore

$$\begin{aligned} Q(\rho _S,E^*_S)=\sum _{n\ne m}\left( p_n-\frac{p_m-p_n}{\ln (p_m/p_n)}\right) |\langle e_n|E^*_S|e_m\rangle |^2 ~. \end{aligned}$$
(95)

Appendix F. Derivation of Eqs. (25) and (31)

By adding the terms related to the skew information and the QFI, we achieve

$$\begin{aligned}&\mathcal F(\lambda _p)+Q(\rho _S,E^*_S) =\textrm{Var}(\rho _S,E^*_S)+\sum _{n\ne m}\nonumber \\&\left[ \frac{2(p_m-p_n)^2}{(p_n+p_m)(\ln (p_m/p_n))^2}-\frac{p_m-p_n}{\ln (p_m/p_n)}\right] |\langle e_n|E^*_S|e_m\rangle |^2 ~. \end{aligned}$$
(96)

Now, the following factorization can be considered

$$\begin{aligned} \left[ \frac{2(p_m-p_n)}{(p_n+p_m)(\ln (p_m/p_n))}-1\right] \left( \frac{p_m-p_n}{\ln (p_m/p_n)}\right) ~, \end{aligned}$$
(97)

where the second term in the multiplication is always positive, since \(p_m,p_n\in [0,1]\). Thus, the condition for the expression (97) to be positive is assigned to the following inequality

$$\begin{aligned} \frac{(p_m-p_n)}{(p_n+p_m)}&>\frac{1}{2}\ln (p_m/p_n)~. \end{aligned}$$
(98)

One can follow the solution in two different situations: The first one is when

$$\begin{aligned} \frac{x-1}{x+1}>\frac{1}{2}\ln x, \qquad x=\frac{p_m}{p_n}~. \end{aligned}$$
(99)

The inequality in Eq. (99) is satisfied for the interval \(0<x<1\), where \(p_m<p_n\).

The second one is when \(p_m>p_n\), and we have

$$\begin{aligned} \frac{1-x}{1+x}>-\frac{1}{2}\ln (x)~, \end{aligned}$$
(100)

with \(x=p_n/p_m\), which is exactly the same inequality as before with only the sign changed. Therefore, the positivity of the second term on the right side of Eq. (96) boils down to the inequalities (99) and (100), which were proven to be valid for any real values of \(p_m\) and \(p_n\) between 0 and 1. From these considerations, we can write an inequality as

$$\begin{aligned} \mathcal F(\lambda _p) \le \textrm{Var}(\rho _S,E^*_S)-Q(\rho _S,E^*_S). \end{aligned}$$
(101)

Furthermore, we express the uncertainty using the operators \(A^*_i\)’s by

$$\begin{aligned} E^{*p}_{S}=\sum _i\frac{\partial (\lambda _iA^*_i)}{\partial \lambda _p}~, \end{aligned}$$
(102)

then

$$\begin{aligned} K(\rho _S,E^{*p}_S)&=\int _0^1d\alpha \,\textrm{tr}\{\rho _S^\alpha \delta E^{*p}_S\rho _S^{1-\alpha }\delta E^{*p}_S\}~, \end{aligned}$$
(103)

where \(\delta E^{*p}_S=E^{*p}_S-\langle E^{*p}_S\rangle \). By considering the dependence \(\lambda _i\) and \(A^*_p\) on \(\lambda _p\), we have

$$\begin{aligned} E^{*p}_{S} = \sum _{i\ne p}(\dot{\lambda }_iA_i^*+\lambda _i\dot{\lambda }_i\frac{\partial A_i^*}{\partial \lambda _i})+\partial _{\lambda _p}[\lambda _p A_p^*], \qquad \textrm{with} \quad \dot{\lambda }_i=\frac{\partial \lambda _i}{\partial \lambda _p}~. \end{aligned}$$
(104)

Finally, given that \([A^*_p,\rho _S]=0~(i\ne p)\), we derive a general expression for classical uncertainty in the following form

$$\begin{aligned}&K(\rho _S, E^{*p}_{S}) = \int _0^1d\alpha \textrm{tr} \left\{ \rho _S^\alpha [\partial _{\lambda _p}[ {\lambda _p}A^*_p] \rho _S^{1-\alpha }\partial _{\lambda _p} [{\lambda _p}A^*_p]\right\} \nonumber \\&\quad - \langle \partial _{\lambda _p}[ \lambda _p A^*_p]\rangle ^2+\sum _{i\ne p}\dot{\lambda }_i\langle \partial _{\lambda _p}[ {\lambda _p}A^*_p][A^*_i+\lambda _i \frac{\partial A^*_i}{\partial \lambda _i}]\rangle \nonumber \\&+\sum _{j\ne p}\dot{\lambda }_j\langle \partial _{\lambda _p}[\lambda _p A^*_p][A^*_j+\lambda _j\frac{\partial A^*_j}{\partial \lambda _j}]\rangle -\sum _{i\ne p}\dot{\lambda }_i\langle \partial _{\lambda _p} [{\lambda _p}A^*_p]\rangle ~\langle A^*_i+\lambda _i \frac{\partial A^*_i}{\partial \lambda _i}\rangle \nonumber \\&-\sum _{j\ne p}\dot{\lambda }_j\langle \partial _{\lambda _p}[ {\lambda _p}A^*_p]\rangle ~\langle A^*_j+\lambda _j\frac{\partial A^*_j}{\partial \lambda _j}\rangle +\sum _{ij\ne p}\dot{\lambda }_i\dot{\lambda }_j \langle [A^*_i+\lambda _i \frac{\partial A^*_i}{\partial \lambda _i}][A^*_j+\lambda _j\frac{\partial A^*_j}{\partial \lambda _j}] \rangle \nonumber \\&-\sum _{ij\ne p}\dot{\lambda }_i\dot{\lambda }_j\langle A^*_i+\lambda _i \frac{\partial A^*_i}{\partial \lambda _i}\rangle ~ \langle A^*_j+\lambda _j\frac{\partial A^*_j}{\partial \lambda _j}\rangle \nonumber \\&=K(\rho _S,\partial _{\lambda _p}[\lambda _p A^*_p])+2\sum _{i\ne p} \dot{\lambda }_i~ \textrm{Cov}~(\partial _{\lambda _p}[\lambda _p A^*_p],~A^*_i+\lambda _i \frac{\partial A^*_i}{\partial \lambda _i})\nonumber \\ {}&+\sum _{ij\ne p}\dot{\lambda }_i\dot{\lambda }_j~ \textrm{Cov}~(A^*_i+\lambda _i \frac{\partial A^*_i}{\partial \lambda _i},~A^*_j+\lambda _j\frac{\partial A^*_j}{\partial \lambda _j})~. \end{aligned}$$
(105)

where \(\textrm{Cov}(X,Y)=\langle X Y\rangle -\langle X\rangle \langle Y\rangle \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuali, Z., Kamin, F.H., Afonso, R.J.S. et al. Generalized uncertainty relation between thermodynamic variables in quantum thermodynamics. Quantum Inf Process 22, 218 (2023). https://doi.org/10.1007/s11128-023-03959-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03959-6

Keywords

Navigation