Skip to main content
Log in

Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Information security and identity authentication are both critical in communication. Authentication allows the receiver to receive (quantum) information and confirm the sender’s identity. In 2019, Zheng and Long designed an improved version of Zhong et al. controlled quantum secure direct communication with authentication (CQSDCA) protocol, which uses the five-particle cluster state and an exclusive-or (XOR) operation. This protocol ensures data transfer security by including authentication and control phases. However, it was found in this study that the improved CQSDCA protocol has two weaknesses: (1) an external attacker may impersonate the sender, and (2) an external attacker could modify the messages sent by the sender. To solve these problems, we designed a protocol that uses part of a pre-shared key to determine particle sequence ordering and utilizes the computation of hash functions for identity authentication. These improvements prevent modification and impersonation attacks by an external attacker, thus improving the security of the CQSDCA protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Long, G.L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  2. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    ADS  Google Scholar 

  3. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  4. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    ADS  Google Scholar 

  5. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state (vol 253, pg 15, 2005). Opt. Commun. 262(1), 134–134 (2006)

    ADS  Google Scholar 

  6. Li, J., Song, D.-J., Guo, X.-J., Jing, B.: A quantum secure direct communication protocol based on a five-particle cluster state and classical XOR operation. Chin. Phys. C 36(1), 31 (2012)

    ADS  Google Scholar 

  7. Hu, J.-Y., Yu, B., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light: Sci. Appl. 5, e16144 (2016)

    Google Scholar 

  8. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  9. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)

    Google Scholar 

  10. Chen, S.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Three-step three-party quantum secure direct communication. Sci. China Phys. 61(9), 90312 (2018)

    Google Scholar 

  11. Qi, R., Sun, Z., Lin, Z., Niu, P., Hao, W., Song, L., Huang, Q., Gao, J., Yin, L., Long, G.-L.: Implementation and security analysis of practical quantum secure direct communication. Light: Sci. Appl. 8(1), 22 (2019)

    ADS  Google Scholar 

  12. Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. 63(3), 230362 (2019)

    Google Scholar 

  13. Li, T., Long, G.-L.: Quantum secure direct communication based on single-photon bell-state measurement. New J. Phys. 22(6), 063017 (2020)

    ADS  MathSciNet  Google Scholar 

  14. Pan, D., Lin, Z., Wu, J., Zhang, H., Sun, Z., Ruan, D., Yin, L., Long, G.L.: Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 8(9), 1522–1531 (2020)

    Google Scholar 

  15. Sun, Z., Song, L., Huang, Q., Yin, L., Long, G., Lu, J., Hanzo, L.: Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)

    Google Scholar 

  16. Yang, L., Wu, J., Lin, Z., Yin, L., Long, G.: Quantum secure direct communication with entanglement source and single-photon measurement. Sci. China Phys. 63(11), 110311 (2020)

    Google Scholar 

  17. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Google Scholar 

  18. Long, G.-L., Zhang, H.: Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 66(13), 1267–1269 (2021)

    Google Scholar 

  19. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network. Light: Sci. Appl. 10(1), 183 (2021)

    ADS  Google Scholar 

  20. Sheng, Y.-B., Zhou, L., Long, G.-L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Google Scholar 

  21. Ying, J.-W., Zhou, L., Zhong, W., Sheng, Y.-B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys B 31(12), 120303 (2022)

    ADS  Google Scholar 

  22. Zhou, L., Sheng, Y.-B.: One-step device-independent quantum secure direct communication. Sci. China Phys. 65(5), 250311 (2022)

    MathSciNet  Google Scholar 

  23. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19(1), 014036 (2023)

    ADS  Google Scholar 

  24. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)

    ADS  Google Scholar 

  25. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication.” Phys. Rev. A 75(2), 026301 (2007)

    ADS  Google Scholar 

  26. Yen, C.A., Horng, S.J., Goan, H.S., Kao, T.W., Chou, Y.H.: Quantum direct communication with mutual authentication. Quant Inf Comput 9(5–6), 376–394 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Yang, J., Wang, C.A., Zhang, R.: Quantum secure direct communication with authentication expansion using single photons. Commun. Theor. Phys 54(5), 829–834 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Liu, D., Pei, C.X., Quan, D.X., Zhao, N.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27(5), 050306 (2010)

    ADS  Google Scholar 

  29. Gao, T., Yan, F.-L., Wang, Z.-X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893 (2005)

    Google Scholar 

  30. Wang, J., Zhang, Q., Tang, C.-J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266(2), 732–737 (2006)

    ADS  Google Scholar 

  31. Xia, Y., Song, H.-S.: Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Phys. Lett. A 364(2), 117–122 (2007)

    ADS  MATH  Google Scholar 

  32. Chen, X.-B., Wang, T.-Y., Du, J.-Z., Wen, Q.-Y., Zhu, F.-C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quant. Infor. 6(3), 543–551 (2008)

    MATH  Google Scholar 

  33. Zhang, L.-L., Zhan, Y.-B., Zhang, Q.-Y.: Controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 48(10), 2971–2976 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Yang, Y.-G., Chai, H.-P., Teng, Y.-W., Wen, Q.-Y.: Improving the security of controlled quantum secure direct communication by using four particle cluster states against an attack with fake entangled particles. Int. J. Theor. Phys. 50(2), 395–400 (2011)

    MATH  Google Scholar 

  35. Zhu, Z.-C., Hu, A.-Q., Fu, A.-M.: Cryptanalysis and improvement of the controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 53(5), 1495–1501 (2014)

    MATH  Google Scholar 

  36. Wang, M., Ma, W., Shen, D., Yin, X.: A new controlled quantum secure direct communication protocol based on a four-qubit cluster state. Mod. Phys. Lett. B 28(24), 1450194 (2014)

    ADS  MathSciNet  Google Scholar 

  37. Patwardhan, S., Moulick, S.R., Panigrahi, P.K.: Efficient controlled quantum secure direct communication protocols. Int. J. Theor. Phys. 55(7), 3280–3288 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Chang, Y., Xu, C., Zhang, S., Yan, L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)

    Google Scholar 

  39. Nanvakenari, M., Houshmand, M.: An efficient controlled quantum secure direct communication and authentication by using four particle cluster states. Int. J. Quant. Infor. 15(01), 1750002 (2017)

    MATH  Google Scholar 

  40. Zhong, J., Liu, Z., Xu, J.: Analysis and improvement of an efficient controlled quantum secure direct communication and authentication protocol. Comput. Mater. Cont. 57(3), 621–633 (2018)

    Google Scholar 

  41. Zheng, X.-Y., Long, Y.-X.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quant. Inf. Process. 18(5), 129 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Hein, M., Eisert, J., Briegel, H.J.: Multiparty entanglement in graph states. Phys. Rev. A 69(6), 062311 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Stallings, W.: Cryptography and Network Security: Principles and Practice, 3rd edn. Prentice Hall International Inc. (2003)

    Google Scholar 

  44. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quant. Inf. Process. 12(6), 2131–2142 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “Quantum blind signature based on two-state vector formalism.” Quant. Inf. Process. 12(1), 109–117 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers and the editor for their very valuable comments, which greatly enhanced the clarity of this paper. This research was partially supported by the National Science and Technology Council, Taiwan, R.O.C. (Grant Nos. NSTC 111-2221-E-039-014, NSTC 111-2221-E-005-048, NSTC 111-2634-F-005-001, NSTC 111-2218-E-005-007-MBK, NSTC 111-2221-E-143 -006 -MY2, and NSTC 111-2221-E-025-010) and China Medical University, Taiwan (Grant No. CMU111-S-28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wei Tsai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CW., Lin, J., Wang, KL. et al. Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state. Quantum Inf Process 22, 196 (2023). https://doi.org/10.1007/s11128-023-03956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03956-9

Keywords

Navigation