Skip to main content
Log in

n-qubit operations on sphere and queueing scaling limits for programmable quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We derive a general spherical coordinate formula for a quantum state of n-qubit register and study n-qubit operation rules on \((n+1)\)-sphere with the target to help developing a (photon or other technique)-based programmable quantum computer. The newly developed angle-based n-qubit operation rules are simple and efficient, which reduce the complicated quantum multiplication and division operations to simple addition and subtraction operations just like those used in a conventional computer. The rules for n-qubit operations are realized through measurement-based feedback controls and quantum entanglements. In the meanwhile, we derive the scaling limits (called reflecting Gaussian random fields on a \((n+1)\)-sphere) for n-qubit quantum computer-based queueing systems under two different heavy traffic regimes. The queueing systems are with multiple classes of users and batch quantum random walks over the \((n+1)\)-sphere as arrival inputs. In the first regime, the qubit number n is fixed and the scaling is in terms of both time and space. Under this regime, performance modeling during deriving the scaling limit in terms of balancing the arrival and service rates under first-in first-out and work-conserving service policy is conducted. In the second regime, besides the time and space scaling parameters, the qubit number n itself is also considered as a varying scaling parameter with the additional aim to find a suitable number of qubits for the design of a quantum computer. This regime is in contrast to the well-known Halfin–Whitt regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Acasiete, F., Agostini, F.P., Khatibi Moqadam, J., Portugal, R. : Experimental implementation of quantum walks on IBM quantum computers. arXiv:2002.01905v3 (2020)

  2. Arute, F., et al.: Quantum superemacy using a progammable superconducting processor. Nature 574, 505–511 (2019)

    Article  ADS  Google Scholar 

  3. Berdinsky, D.A., Rybnikov, I.P.: On orthogonal curvilinear coordinate systems in constant curvature spaces. Sib. Math. J. 52(3), 394–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernal-Garcia, D.N., Huang, L., Miroshnichenko, A.E., Wooley, M.J.: Generalized Lindblad master equations in quantum reservoir engineering. arXiv:2111.04041v2 (2022)

  5. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  6. Callison, A., Chancellor, N., Mintert, F., Kendon, V.: Finding spin glass ground states using quantum walks. New J. Phys. 21(123022), 1–20 (2019)

    MathSciNet  Google Scholar 

  7. Dai, J.G., Dai, W.: A heavy traffic limit theorem for a class of open queueing networks with finite buffers. Queueing Systems 32, 5–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai, W.: Brownian approximations for queueing networks with finite buffers: modeling, heavy traffic analysis and numerical implementations (Ph.D Thesis, The Georgia Institute of Technology, 1996), Published in UMI Dissertation Services, A Bell & Howell Company, Michigan, U.S.A. (1997)

  9. Dai, W.: Optimal rate scheduling via utility-maximization for \(J\)-user MIMO Markov fading wireless channels with cooperation. Oper. Res. 61(6), 1450–1462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, W.: Platform modelling and scheduling game with multiple intelligent cloud-computing pools for big data. Math. Comput. Model. Dyn. Syst. 24(5), 506–552 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, W.: Quantum-computing with AI & blockchain: modelling, fault tolerance and capacity scheduling. Math. Comput. Model. Dyn. Syst. 25(6), 523–559 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, W.: Convolutional neural network based simulation and analysis for backward stochastic partial differential equations. Comput. Math. Appl. 119, 21–58 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dai, W., Feng, Y.: Stochastic optimal controls for parallel-server channels with zero waiting buffer capacity and multiclass customers. J. Adv. Syst. Sci. Appl. 9(4), 627–646 (2009)

    Google Scholar 

  14. Dembo, A., Lubetzky, E., Zeitouni, O.: Universality for Langevin-like spin dynamics. Ann. Appl. Probab. 31(6), 2864–2880 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Dorrah, A.H., Tamagnone, M., Rubin, N.A., Zaidi, A., Capasso, F.: Introducing Berry phase gradients along the optical path via propagation-dependent polarization transformations. Nanophotonics 11(4), 713–725 (2022)

    Article  Google Scholar 

  16. Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A. September 8, (1989)

  17. Ethier, S.N., Kurtz, T.G.: Markov Process: Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  18. Feynman, R.P.: Quantum Mechanical Computers. Optics News (1985)

  19. Garcia-Escartin, J.C., Gimeno, V., Moyano-Fernández, J.J.: Optimal approximation to unitary quantum operators with linear optics. Quantum Inf. Process. 20(314), 1–18 (2021)

  20. Gawron, P., Kurzyk, D., Puchala, Z.: A model for quantum queue. Int. J. Quantum Inf. 11(2), 1350023 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gazeau, J.P., Szafraniec, F.H.: Three paths toward the quantum angle operator. Ann. Phys. 375, 16–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3) (1981)

  23. Hall, E.: On a new action of the magnet on electric currents. Am. J. Math. 2(3), 287–292 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harrow, A.W., Montanaro, A.: The quantum computational supremacy. Nature 549, 203–209 (2017)

    Article  ADS  Google Scholar 

  25. R. Herrman and T.G. Wong. Simplifying continuous-time quantum walks on dynamic graphs. Quantum Information Processing 21(54), (2022)

  26. Hornibrook, M., Colless, J.I., Conway Lamb, I.D., Pauka, S.J., Lu, H., Gossard, A.C., Watson, J.D., Gardner, G.C., Fallahi, S., Manfra, M.J., Reilly, D.J.: Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3(024010) (2015)

  27. Jiang, Q., Dai, W.: Reflecting time-space Gaussian random field on compact Riemannian manifold and excursion probability. Stochast 94: 865–890 (2022)

  28. Jiang, Q., Dai, W.: Fast simulation for Gaussian random fields on compact Riemannian manifolds. Commun. Nonlinear Sci. Numer. Simul. 118, 107002 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kang, M., Lau, K.M., Yung, T.K., Du, S., Tam, W.Y., Li, J.: Tailor-made unitary operations using dielectric metasurfaces. Opt. Express 29(4), 5677–5686 (2021)

    Article  ADS  Google Scholar 

  30. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  31. Košík, J., Bužek, V., Hillery, M.: Quantum walks with random phase shifts. Phys. Rev. A 74(2), 022310 (2006)

    Article  ADS  Google Scholar 

  32. Kolokoltsov, V.N.: Dynamic quantum games. Dyn. Games Appl. 12, 552–573 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, J., Tymchenko, M., Argyropoulos, C., Chen, P.Y., Lu, F., Demmerle, F., Boehm, G., Amann, M.C., Alù, A., Belkin, M.A.: Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014)

    Article  ADS  Google Scholar 

  34. Li, Q., Bao, W., Nie, Z., Xia, Y., Xue, Y., Wang, Y., Yang, S., Zhang, X.: A non-unity metasurface enables continuous control of quantum photon-photon interactions from bosonic to fermionic. Narure Photon. 15, 171–267 (2021)

    Google Scholar 

  35. Liang, W., Amini, N.H., Mason, P.: Feedback exponential stabilization of GHZ states of multiqubit systems. IEEE Trans. Autom. Control 67(6) (2022)

  36. Luo,Y.H.: et al. Quantum teleportation of physical qubits into logical code spaces. PNAS 118(36) 1–5 (2021). https://doi.org/10.1073/pnas.2026250118

  37. Madsen, L.S., Laudenbach, F., Askarani, M.F., Rortais, F., Vincent, T., Bulmer, J.F.F., Miatto, F.M., Neuhaus, L., Helt, L.G., Collins, M.J., Lita, A.E., Gerrits, T., Nam, S.W., Vaidya, V.D., Mentotti, M., Dhand, I., Vernon, Z., Quesada, N., Lavoie, J.: Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022)

    Article  ADS  Google Scholar 

  38. Mandayam, P., Jagannathan, K., Chatterjee. The classical capacity of additive quantum queue-channels. IEEE J. Sel. Areas Inf. Theory 1(2), 432–444 (2020)

  39. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond: In Introduction to the Replica Method and Its Applications. World Scientific Publishing Company, Singapore, (1987)

  40. Narimatsu, A., Ohno, H., Wada, K.: Unitary equivalence classes of split quantum walks. Quantum Inf. Process. 20(368), 1–23 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  42. Nikandish, R., Blokhina, E., Leipold, D., Staszewski, R.B.: Semiconduct quantum computing: Toward a CMOS quantum computer on chip. IEEE Nanotechnol. Mag. 8–20 (2021)

  43. Parthasarathy, K.P.: An Introduction to Quantum Stochastic Calculus. Birkhauser, Basel (1992)

    Book  MATH  Google Scholar 

  44. Raeis-Hosseini, N., Rho, J.: Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Material 10(1046), 1–26 (2017)

    Google Scholar 

  45. Rajan, D., Visser,M.: Quantum Blockchain using entanglement in time. arXiv:1804.05979 (2018)

  46. Ringbauer, M., Meth, M., Postler, L., Stricker, R., Blatt, R., Schindler, P., Montz, T.: A universal qubit quantum processor with trapped ions. Nat. Physics. https://www.nature.com/articles/s41567-022-01658-0.pdf (2022)

  47. Sharifi, J.: Superconductor qubits Hamiltonian approximations effect on quantum state evolution and control. Sci. Rep. 11(12791) (2021)

  48. Shepard, S.R.: Quantum theory of angle and relative-phase measure. Phys. Rev. A 90(062117), 1–16 (2014)

    Google Scholar 

  49. Shikakhwa, M.S., Chair, N.: Hermittian spin-orbit Hamiltonians on a surface in orthogonal curvilinear coordinates: a new practical approach. Phys. Lett. A 380, 1985–1989 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Singh, R., Parthasarathy, H., Singh, J.: Quantum image restoration based on Hudson-Parthasarathy Schrodinger equation. Quantum Inf. Process. 18(351) (2019)

  51. SIR Forum: The Six Industrial Revolution with the website at https://www.sirforum.net/ (2018)

  52. Tannu, S.S., Myers, Z.A., Nair, P.J.: Taming the instruction bandwidth of quantum computers via hardware-managed error correction. Micro- 50, 679–691 (2017)

    Google Scholar 

  53. Tymchenko, M., Gomez-Diaz, J.S., Lee, J., Nookala, N., Belkin, M.A., Alù, A.: Gradient nonlinear Pancharatnam-Berry metasurfaces. Phys. Rev. Lett. 115(207403), 1–5 (2015)

    Google Scholar 

  54. Whitt, W.: Stochastic Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York (2001)

    MATH  Google Scholar 

  55. Yamamoto, N., Tsumura, K., Hara, S.: Feedback control of quantum entanglement in a two-spin system. Automatica 43, 981–992 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zakharov, V.E.: Description of the \(n\)-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: integration of the Lamé equations. Duke Math. J. 94(1), 103–139 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhong, H.S., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  ADS  Google Scholar 

  58. Zhong, H.S., et al.: Phase-programmable Gaussian Boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyang Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project is funded by National Natural Science Foundation of China with Grant Nos. 11771006, 10971249, and 11371010.

Appendices

Appendix: Proof of Proposition 2.1

The proof of Proposition 2.1 consists of the following two parts that correspond to the two counterparts in the statement of the theorem.

1.1 Proof of Part I

In this part of proof, we prove the claim that a n-qubit quantum wave function \(|\Psi \rangle \) satisfies the constraint in (2.2) if its coefficients are given by (2.4). In fact, for the example shown in Fig. 2 with \(n=1\), the single-qubit quantum wave function \(|\Psi \rangle =\psi _{0}|0\rangle +\psi _{1}|1\rangle \) with \(\psi _{0}=\text{ cos }\left( \theta _{1}\right) \) and \(\psi _{1}=e^{i\varphi }\text{ sin }(\theta _{1})\) and satisfies \(|\psi _{0}|^{2}+|\psi _{1}|^{2}=1\). Furthermore, if \(n=2\), the coefficients of the corresponding 2-qubit quantum wave function in (2.1), which is given by

$$\begin{aligned} |\Psi \rangle =\psi _{0}|00\rangle +\psi _{1}|01\rangle +\psi _{2}|10\rangle +\psi _{3}|11\rangle , \end{aligned}$$

also satisfy the relationship in (2.2) due to the following computation,

$$\begin{aligned}&\left| \psi _{0}\right| ^{2}+\left| \psi _{1}\right| ^{2}+\left| \psi _{2}\right| ^{2}+\left| \psi _{3}\right| ^{2} \\&\quad =\left| \cos (\theta _{1})\right| ^{2}+\left| \sin (\theta _{1})\cos (\theta _{2})\right| ^{2} +\left| \sin (\theta _{1})\sin (\theta _{2})\cos (\theta _{3})\right| ^{2}\\&\qquad +\left| e^{i\varphi }\sin (\theta _{1})\sin (\theta _{2})\sin (\theta _{3})\right| ^{2} \\&\quad =\left| \cos (\theta _{1})\right| ^{2}+\left| \sin (\theta _{1})\right| ^{2}\left| \cos (\theta _{2})\right| ^{2}\\&\qquad +\left| \sin (\theta _{1})\right| ^{2}\left| \sin (\theta _{2})\right| ^{2}\left( |\cos (\theta _{3})|^{2}+|\sin (\theta _{3})|^{2}\right) \\&\quad =\left| \cos (\theta _{1})\right| ^{2}+\left| \sin (\theta _{1})\right| ^{2}\left( |\cos (\theta _{2})|^{2}+|\sin (\theta _{2})|^{2}\right) =1. \end{aligned}$$

By the similar way, we can show that the constraint in (2.2) is true for the given expressions in (2.4) corresponding to each \(n\in \{1,2,...\}\).

1.2 Proof of Part II

In this part of proof, we prove the claims concerning the four n-qubit quantum operations as stated in part II of Proposition 2.1 to be true. More precisely, we prove the claims by constructing four explicit mapping functions required by (2.7)–(2.8) through explicitly deriving their associated coefficients corresponding to the four operations of addition (+), subtraction (-), multiplication (\(*\)), and division (\(/\)) over \(S^{n+1}\). For convenience, we summarize them into four steps as follows.

Step I. For the addition (+) operation, the corresponding coefficients of \(|\Upsilon \rangle (\Phi ,\Psi ) =|\Upsilon \rangle ^{\Phi +\Psi }\) in (2.7) can be calculated as follows. For \(k=1\), we have that

$$\begin{aligned} \upsilon _{1}(\phi _{1},\psi _{1})=\frac{\phi _{1}+\psi _{1}}{2\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) } =\frac{\cos \left( \theta ^{\Phi }_{1}\right) +\cos \left( \theta ^{\Psi }_{1}\right) }{2\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) } =\cos \left( \frac{\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}}{2}\right) .\nonumber \\ \end{aligned}$$
(3.39)

For \(k=2\), we have that

$$\begin{aligned} \upsilon _{2}(\phi _{2},\psi _{2})= & {} \frac{(\phi _{2}+\psi _{2})+\sin (\theta ^{\Phi }_{1})\cos (\theta ^{\Psi }_{2}) +\sin (\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2})}{2^{2}\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}}{2}\right) } \nonumber \\= & {} \frac{\left( \sin (\theta ^{\Phi }_{1})+\sin (\theta ^{\Psi }_{1})\right) \left( \cos (\theta ^{\Phi }_{2})+\cos (\theta ^{\Psi }_{2})\right) }{2^{2}\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}}{2}\right) } \nonumber \\= & {} \sin \left( \frac{\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}}{2}\right) . \end{aligned}$$
(3.40)

In general, for an integer \(k\in \{2,3,...,2^{n}-1\}\), we have that

$$\begin{aligned} \upsilon _{k}(\phi _{k},\psi _{k})= & {} \frac{1}{2^{k}\prod _{j=1}^{k}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) } \nonumber \\&\times \bigg ((\phi _{k}+\psi _{k})+\Big (\prod _{j=1}^{k-1}\left( \sin (\theta ^{\Phi }_{j})+\sin (\theta ^{\Psi }_{j})\right) \left( \cos (\theta ^{\Phi }_{k})+\cos (\theta ^{\Psi }_{k})\right) \Big ) \nonumber \\&-\Big (\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j})\cos (\theta ^{\Phi }_{k})+\prod _{j=1}^{k-1}\sin (\theta ^{\Psi }_{j})\cos (\theta ^{\Psi }_{k})\Big )\bigg ) \nonumber \\= & {} \frac{\prod _{j=1}^{k-1}\left( \sin (\theta ^{\Phi }_{j})+\sin (\theta ^{\Psi }_{j})\right) \left( \cos (\theta ^{\Phi }_{k})+\cos (\theta ^{\Psi }_{k})\right) }{2^{k}\prod _{j=1}^{k}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) } \nonumber \\= & {} \prod _{j=1}^{k-1}\sin \left( \frac{\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k}}{2}\right) . \end{aligned}$$
(3.41)

Finally, for \(k=2^{n}\), we have that

$$\begin{aligned} \upsilon _{2^{n}}(\phi _{2^{n}},\psi _{2^{n}})= & {} \frac{1}{2^{2^{n-1}}e^{\left( i\left( \theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi }\right) /2\right) } \prod _{j=1}^{2^{n}-1}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) } \nonumber \\&\bigg ((\phi _{2^{n}}+\psi _{2^{n}})+e^{i\left( \theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi }\right) } \prod _{j=1}^{2^{n}-1}\left( \sin (\theta ^{\Phi }_{j})+\sin (\theta ^{\Psi }_{j})\right) \nonumber \\&-\Big (e^{i\theta _{2^{n}}^{\Phi }}\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j}) +e^{i\theta _{2^{n}}^{\Psi }}\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Psi }_{j})\Big )\bigg ) \nonumber \\= & {} \frac{e^{i\left( \theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi }\right) } \prod _{j=1}^{2^{n}-1}\left( \sin (\theta ^{\Phi }_{j})+\sin (\theta ^{\Psi }_{j})\right) }{2^{2^{n-1}}e^{\left( i\left( \theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi }\right) /2\right) } \prod _{j=1}^{2^{n}-1}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) } \nonumber \\= & {} e^{\left( i\left( \theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi }\right) /2\right) } \prod _{j=1}^{2^{n}-1}\sin \left( \frac{\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j}}{2}\right) . \end{aligned}$$
(3.42)

Thus, \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi +\Psi }\) in (2.7) with the coefficients in (3.39)–(3.42) satisfies the constraint in (2.2) and has the spherical coordinate \(\theta ^{|\Upsilon \rangle ^{\Phi +\Psi }}\) as in (2.8).

Step II. For the subtraction (-) operation, the corresponding coefficients of \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi -\Psi }\) in (2.7) can be calculated as follows. For \(k=1\), we have that

$$\begin{aligned} \upsilon _{1}(\phi _{1},\psi _{1})=\frac{\phi _{1}-\psi _{1}+2\cos \left( \theta ^{\Psi }_{1}\right) }{2\cos \left( \frac{\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}}{2}\right) } =\frac{\cos \left( \theta ^{\Phi }_{1}\right) +\cos \left( \theta ^{\Psi }_{1}\right) }{2\cos \left( \frac{\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}}{2}\right) } =\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) .\nonumber \\ \end{aligned}$$
(3.43)

For \(k=2\), we have that

$$\begin{aligned} \upsilon _{2}(\phi _{2},\psi _{2})= & {} \frac{(\phi _{2}-\psi _{2})+\sin (\theta ^{\Phi }_{1})\cos (\theta ^{\Psi }_{2}) -\sin (\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2})}{2^{2}\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2}}{2}\right) } \nonumber \\= & {} \frac{\left( \sin (\theta ^{\Phi }_{1})-\sin (\theta ^{\Psi }_{1})\right) \left( \cos (\theta ^{\Phi }_{2})+\cos (\theta ^{\Psi }_{2})\right) }{2^{2}\cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2}}{2}\right) } \nonumber \\= & {} \sin \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}}{2}\right) . \end{aligned}$$
(3.44)

In general, for an integer \(k\in \{2,3,...,2^{n}-1\}\), we have that

$$\begin{aligned} \upsilon _{k}(\phi _{k},\psi _{k})= & {} \frac{1}{2^{k}\prod _{j=1}^{k-1}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k}}{2}\right) }\nonumber \\&\times \bigg ((\phi _{k}-\psi _{k})+\Big (\prod _{j=1}^{k-1}\left( \sin (\theta ^{\Phi }_{j})-\sin (\theta ^{\Psi }_{j})\right) \left( \cos (\theta ^{\Phi }_{k})+\cos (\theta ^{\Psi }_{k})\right) \Big ) \nonumber \\&-\Big (\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j})\cos (\theta ^{\Phi }_{k})-\prod _{j=1}^{k-1}\sin (\theta ^{\Psi }_{j})\cos (\theta ^{\Psi }_{k})\Big )\bigg ) \nonumber \\= & {} \frac{\prod _{j=1}^{k-1}\left( \sin (\theta ^{\Phi }_{j})-\sin (\theta ^{\Psi }_{j})\right) \left( \cos (\theta ^{\Phi }_{k})+\cos (\theta ^{\Psi }_{k})\right) }{2^{k}\prod _{j=1}^{k-1}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k}}{2}\right) } \nonumber \\= & {} \prod _{j=1}^{k-1}\sin \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) \cos \left( \frac{\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k}}{2}\right) . \end{aligned}$$
(3.45)

Finally, for \(k=2^{n}\), we have that

$$\begin{aligned} \upsilon _{2^{n}}(\phi _{2^{n}},\psi _{2^{n}})= & {} \frac{1}{2^{2^{n-1}}e^{\left( i\left( \theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi }\right) /2\right) } \prod _{j=1}^{2^{n}-1}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) } \nonumber \\&\times \bigg ((\phi _{2^{n}}+\psi _{2^{n}})+e^{i\left( \theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi }\right) } \prod _{j=1}^{2^{n}-1}\left( \sin (\theta ^{\Phi }_{j})-\sin (\theta ^{\Psi }_{j})\right) \nonumber \\&-\Big (e^{i\theta _{2^{n}}^{\Phi }}\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j}) -e^{i\theta _{2^{n}}^{\Psi }}\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Psi }_{j})\Big )\bigg ) \nonumber \\= & {} \frac{e^{i\left( \theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi }\right) } \prod _{j=1}^{2^{n}-1}\left( \sin (\theta ^{\Phi }_{j})-\sin (\theta ^{\Psi }_{j})\right) }{2^{2^{n-1}}e^{\left( i\left( \theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi }\right) /2\right) } \prod _{j=1}^{2^{n}-1}\cos \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) } \nonumber \\= & {} e^{\left( i\left( \theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi }\right) /2\right) } \prod _{j=1}^{2^{n}-1}\sin \left( \frac{\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}}{2}\right) . \end{aligned}$$
(3.46)

Thus, \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi -\Psi }\) in (2.7) with the coefficients in (3.43)–(3.46) satisfies the constraint in (2.2) and has the spherical coordinate \(\theta ^{|\Upsilon \rangle ^{\Phi -\Psi }}\) as in (2.8).

Step III. For the multiplication (\(*\)) operation, the corresponding coefficients of \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi *\Psi }\) in (2.7) can be calculated as follows. For \(k=1\), we have that

$$\begin{aligned} \upsilon _{1}(\phi _{1},\psi _{1})=2\phi _{1}*\psi _{1}-\cos \left( \theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}\right) =\cos \left( \theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}\right) . \end{aligned}$$
(3.47)

For \(k=2\), we have that

$$\begin{aligned} \upsilon _{2}(\phi _{2},\psi _{2})= & {} \frac{2^{2}\cos (\theta ^{\Phi }_{1})*\phi _{2}*\psi _{2}}{\sin (\theta ^{\Phi }_{1})} -\Big (\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}) \nonumber \\&-\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}) -\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2})\Big ) \nonumber \\= & {} \Big (\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})-\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\Big ) \Big (\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2})+\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2})\Big ) \nonumber \\&-\Big (\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}) -\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}) \nonumber \\&-\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2})\Big ) \nonumber \\= & {} \sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2}). \end{aligned}$$
(3.48)

In general, for an integer \(k\in \{2,3,...,2^{n}-1\}\), we have that

$$\begin{aligned} \upsilon _{k}(\phi _{k},\psi _{k})= & {} \frac{2^{k}\left( \prod _{j=1}^{k-1}\cos (\theta ^{\Phi }_{j})\right) *\phi _{k}*\psi _{k}}{\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j})}-\Bigg (\prod _{j=1}^{k-1}\Big (\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Big ) \nonumber \\&\times \Big (\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})+\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big ) -\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big )\Bigg ) \nonumber \\= & {} \prod _{j=1}^{k-1}\Big (\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Big ) \Big (\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})+\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big ) \nonumber \\&-\Bigg (\prod _{j=1}^{k-1}\Big (\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Big ) \nonumber \\&\times \Big (\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})+\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big )-\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big )\Bigg ) \nonumber \\= & {} \prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k}). \end{aligned}$$
(3.49)

Finally, for \(k=2^{n}\), we have that

$$\begin{aligned} \upsilon _{2^{n}}(\phi _{2^{n}},\psi _{2^{n}})= & {} \frac{2^{2^{n}-1} \prod _{j=1}^{2^{n}-1}\cos (\theta ^{\Phi }_{j})*\phi _{2^{n}}*\psi _{2^{n}}}{\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j})} -e^{i\left( (\theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi })\right) } \nonumber \\&\times \Bigg (\prod _{j=1}^{2^{n}-1}\Big (\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Big ) -\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})\bigg )\Bigg ) \nonumber \\= & {} e^{i\left( (\theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi })\right) } \Bigg (\prod _{j=1}^{2^{n}-1}\Big (\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Big ) \nonumber \\&-\bigg (\prod _{j=1}^{2^{n}-1}\Big (\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Big ) \nonumber \\&-\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})\bigg )\Bigg ) \nonumber \\= & {} e^{\left( i(\theta _{2^{n}}^{\Phi }+\theta _{2^{n}}^{\Psi })\right) } \prod _{j=1}^{2^{n}-1}\sin \left( \theta ^{\Phi }_{j}+\theta ^{\Psi }_{j}\right) . \end{aligned}$$
(3.50)

Thus, \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi *\Psi }\) in (2.7) with the coefficients in (3.47)–(3.50) satisfies the constraint in (2.2) and has the spherical coordinate \(\theta ^{|\Upsilon \rangle ^{\Phi *\Psi }}\) as in (2.8).

Step IV. For the division (\(/\)) operation, the corresponding coefficients of \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi /\Psi }\) in (2.7) can be calculated as follows. For \(k=1\), we have that

$$\begin{aligned} \upsilon _{1}(\phi _{1},\psi _{1})=2(\phi _{1}/\psi _{1})\cos ^{2}(\theta ^{\Psi }_{1})-\cos \left( \theta ^{\Phi }_{1}+\theta ^{\Psi }_{1}\right) =\cos \left( \theta ^{\Phi }_{1}-\theta ^{\Psi }_{1}\right) . \end{aligned}$$
(3.51)

For \(k=2\), we have that

$$\begin{aligned} \upsilon _{2}(\phi _{2},\psi _{2})= & {} -\frac{2^{2}\cos (\theta ^{\Phi }_{1})*(\phi _{2}/\psi _{2})*\sin ^{2}(\theta _{1}^{\Psi })\cos ^{2}(\theta ^{\Psi }_{2})}{\sin (\theta ^{\Phi }_{1})}\nonumber \\&+\Big (\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}) +\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2})\nonumber \\&-\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2})\Big )\nonumber \\= & {} -\Big (\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})-\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\Big ) \Big (\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2})+\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2})\Big )\nonumber \\&+\Big (\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}) +\sin (\theta ^{\Phi }_{1}+\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}+\theta ^{\Psi }_{2}) \nonumber \\&-\sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2})\Big ) \nonumber \\= & {} \sin (\theta ^{\Phi }_{1}-\theta ^{\Psi }_{1})\cos (\theta ^{\Phi }_{2}-\theta ^{\Psi }_{2}). \end{aligned}$$
(3.52)

In general, for an integer \(k\in \{2,3,...,2^{n}-1\}\), we have that

$$\begin{aligned}&\upsilon _{k}(\phi _{k},\psi _{k})\nonumber \\= & {} -\frac{(-1)^{k-1}2^{k}\left( \prod _{j=1}^{k-1}\cos (\theta ^{\Phi }_{j})\right) *(\phi _{k}/\psi _{k}) *\prod _{j=1}^{k-1}\sin ^{2}(\theta ^{\Psi }_{j})\cos ^{2}(\theta ^{\Psi }_{k})}{\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j})}\nonumber \\&-\Bigg (\prod _{j=1}^{k-1}\Big (-\left( \sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\right) \Big ) \Big (\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})+\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big ) \nonumber \\&-\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})\Big )\Bigg ) \nonumber \\= & {} \prod _{j=1}^{k-1}\Big (-\left( \sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\right) \Big ) \Big (\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})+\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big ) \nonumber \\&-\Bigg (\prod _{j=1}^{k-1}\Big (-\left( \sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\right) \Big ) \Big (\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})+\cos (\theta ^{\Phi }_{k}+\theta ^{\Psi }_{k})\Big ) \nonumber \\&-\prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k})\Big )\Bigg ) \nonumber \\= & {} \prod _{j=1}^{k-1}\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\cos (\theta ^{\Phi }_{k}-\theta ^{\Psi }_{k}). \end{aligned}$$
(3.53)

Finally, for \(k=2^{n}\), we have that

$$\begin{aligned} \upsilon _{2^{n}}(\phi _{2^{n}},\psi _{2^{n}})= & {} \frac{(-2)^{2^{n}-1} \prod _{j=1}^{2^{n}-1}\cos (\theta ^{\Phi }_{j})*\phi _{2^{n}}*\psi _{2^{n}}*\prod _{j=1}^{2^{n}-1}\sin ^{2}(\theta ^{\Psi }_{j})\cos ^{2}(\theta ^{\Psi }_{2^{n}})}{\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j})}\nonumber \\&-e^{i\left( (\theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi })\right) } \Bigg (\prod _{j=1}^{2^{n}-1}\Big (-\left( \sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\right) \Big ) \nonumber \\&-\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\bigg )\Bigg ) \nonumber \\= & {} e^{i\left( (\theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi })\right) } \Bigg (\prod _{j=1}^{2^{n}-1}\Big (-\left( \sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\right) \Big ) \nonumber \\&-\prod _{j=1}^{2^{n}-1}\Big (-\left( \sin (\theta ^{\Phi }_{j}+\theta ^{\Psi }_{j})-\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\right) \Big ) \nonumber \\&+\prod _{j=1}^{2^{n}-1}\sin (\theta ^{\Phi }_{j}-\theta ^{\Psi }_{j})\Bigg ) \nonumber \\= & {} e^{\left( i(\theta _{2^{n}}^{\Phi }-\theta _{2^{n}}^{\Psi })\right) } \prod _{j=1}^{2^{n}-1}\sin \left( \theta ^{\Phi }_{j}-\theta ^{\Psi }_{j}\right) . \end{aligned}$$
(3.54)

Thus, \(|\Upsilon \rangle (\Phi ,\Psi )=|\Upsilon \rangle ^{\Phi /\Psi }\) in (2.7) with the coefficients in (3.51)–(3.54) satisfies the constraint in (2.2) and has the spherical coordinate \(\theta ^{|\Upsilon \rangle ^{\Phi /\Psi }}\) as in (2.8).

Finally, by following from the proofs in Part I and Part II with four proving steps, we can reach a proof for Proposition 2.1. \(\square \)

Conclusion

In this paper, we derive a general spherical coordinate formula for a quantum state of n-qubit register and study n-qubit operation rules on \((n+1)\)-sphere with the target to help developing a (photon or other technique)-based programmable quantum computer. The newly developed angle-based n-qubit operation rules are simple and efficient, which reduce the complicated quantum multiplication and division operations to simple addition and subtraction operations just like those used in a conventional computer. The rules for n-qubit operations are realized through measurement-based feedback controls and quantum entanglements. In the meanwhile, we derive the scaling limits (referred to as RGRFs on the sphere \(S^{n+1}\)) for n-qubit quantum computer-based queueing systems under two different heavy traffic regimes. The queueing systems are with multiple classes of users and batch quantum random walks over the sphere as arrival inputs. In the first regime, the qubit number n is fixed and the scaling is in terms of both time and space. Under this regime, performance modeling during deriving the scaling limit RGRF in terms of reasonably balancing the arrival and service rates under first-in first-out and work-conserving service policy is conducted. In the second regime, besides the time and space scaling parameters, the qubit number n itself is also considered as a varying scaling parameter with the additional aim to find a suitable number of qubits for the design of a quantum computer. The second heavy traffic regime is in contrast to the well-known Halfin–Whitt regime where the number of servers is considered as a scaling parameter. Finally, it is worthy to point out that the extension of our current study to a general Riemannian manifold (e.g., a torus corresponding to a scaling quantum computer) is under way.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W. n-qubit operations on sphere and queueing scaling limits for programmable quantum computer. Quantum Inf Process 22, 122 (2023). https://doi.org/10.1007/s11128-023-03851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03851-3

Keywords

Navigation