Skip to main content
Log in

Continuous variable teleportation with indefinite causal order

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Continuous variable teleportation with indefinite causal order is studied for an optical system. The relation between input and teleported states is derived. The performance of the teleportation is evaluated in terms of the fidelity. As an example, the teleportation of a coherent state, a squeezed-vacuum state and a Schrödinger-cat state is investigated. The result shows that the indefinite causal order can improve the fidelity of the continuous variable teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Peres, A.: Quantum theory: concepts and methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  2. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Reid, M.D., Drummond, P.D., Bowen, W.P., Cavalcanti, E.G., Lam, K.P., Bachor, H.A., Andersen, U.L., Leuchs, G.: The Einstein-Podolsky-Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  6. Chiribella, G.: Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301 (2012)

    Article  ADS  Google Scholar 

  7. Ibnouhsein, I., Grinbaum, A.: Information-theoretic constraints on correlations with indefinite causal order. Phys. Rev. A 92, 042124 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ebler, D., Salek, S., Chiribella, G.: Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120, 120502 (2018)

    Article  ADS  Google Scholar 

  9. Goswami, K., Giarmatzi, C., Kewming, M., Costa, F., Branciard, C., Romero, J., White, A.G.: Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018)

    Article  ADS  Google Scholar 

  10. Jia, D., Costa, F.: Causal order as a resource for quantum communication. Phys. Rev. A 100, 052319 (2019)

    Article  ADS  Google Scholar 

  11. Guo, Y., Hu, X.M., Hou, Z.B., Cao, H., Cui, J.M., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C., Chiribella, G.: Experimental transmission of quantum information using a superposition of causal orders. Phys. Rev. Lett. 124, 030502 (2020)

    Article  ADS  Google Scholar 

  12. Loizeau, N., Grinbaum, A.: Channel capacity enhancement with indefinite causal order. Phys. Rev. A 101, 012340 (2020)

    Article  ADS  Google Scholar 

  13. Procopio, L.M., Delgado, F., Enriquez, M., Belabas, N., Levenson, J.A.: Sending classical information via three noisy channels in superposition of causal orders. Phys. Rev. A 101, 012346 (2020)

    Article  ADS  Google Scholar 

  14. Felce, D., Vedral, V.: Quantum refrigeration with indefinite causal order. Phys. Rev. Lett. 125, 070603 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chapeau-Blondeau, F.: Noisy quantum metrology with the assistance of indefinite causal order. Phys. Rev. A 103, 032615 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chapeau-Blondeau, F.: Quantum parameter estimation on coherently superposed noisy channel. Phys. Rev. A 104, 032214 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ban, M.: On sequential measurements with indefinite causal order. Phys. Lett. A 403, 127383 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mukhopadhyay, C., Pati, A.K.: Superposition of causal order enables perfect quantum advantage in teleportation under very noisy singlets. J. Phys. Commun. 4, 105003 (2020)

    Article  Google Scholar 

  19. Cardoso-Isidoro, C., Delgado, F.: Featuring causal order in teleportation of two quantum teleportation channels. J. Phys. Conf. Series 1540, 012024 (2020)

    Article  Google Scholar 

  20. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  21. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polizik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  22. Ban, M., Sasaski, M., Takeoka, M.: Continuous variable teleportation as a generalized thermalizing quantum channel. J. Phys. A 35, L401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bowen, G., Bose, S.: Teleportation as a depolarizing channel, relative entropy and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  24. Hall, M.J.W.: Gaussian noise and quantum-optical communication. Phys. Rev. A 50, 3295 (1994)

    Article  ADS  Google Scholar 

  25. Glauber, R.J.: Photon correlations. Phys. Rev. Lett. 10, 84 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sudarshan, E.C.G.: Euqivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Agarwal, G.S.: Quantum optics. Cambridge Univ. Press, Cambridge (2013)

    MATH  Google Scholar 

  28. Yuen, H.P.: Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226 (1976)

    Article  ADS  Google Scholar 

  29. Schumaker, B.L., Caves, C.M.: New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys. Rev. A 31, 3093 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Milburn, G.J., Holmes, C.A.: Dissipative quantum and classical Liouville mechanics of the anharmonic oscillator. Phys. Rev. Lett. 56, 2237 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. Yurke, B., Stoler, D.: Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13 (1986)

    Article  ADS  Google Scholar 

  32. Bužek, V., Vidiella-Barranco, A., Knight, P.L.: Superpositions of coherent states: squeezing and dissipation. Phys. Rev. A 45, 6570 (1992)

    Article  ADS  Google Scholar 

  33. Ban, M.: Non-classicality created by quantum channels with indefinite causal order. Phys. Lett. 402, 127381 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Randomly modulated amplitude channel with indefinite causal order

A Randomly modulated amplitude channel with indefinite causal order

First, we briefly review a quantum channel in which amplitude of an optical system is randomly modulated [24]. If the quantum channel displaces the amplitude of the optical system initialized in a quantum state \(\hat{\rho }_{\text {in}}\) by a complex number \(\beta \), the quantum channel yields the state \(\hat{\rho }_{\text {out}}(\beta ) =\hat{D}(\beta )\hat{\rho }_{\text {in}}\hat{D}^{\dagger }(\beta )\) with the displacement operator \(\hat{D}(\beta )=e^{\beta \hat{a}^{\dagger }-\beta ^{*}\hat{a}}\). Then, when such a displacement occurs with probability \(p(\beta )\) which is normalized by \(\int \frac{d^{2}\beta }{\pi }p(\beta )=1\), the output state of the optical system is given by \(\hat{\rho }_{\text {out}}=\int \frac{d^{2}\beta }{\pi }p(\beta )\hat{D}(\beta ) \hat{\rho }_{\text {in}}\hat{D}^{\dagger }(\beta )\), where the free part of the time-evolution has been ignored. This result is equal to Eq. (1). The detailed derivation and its physical meaning have been discussed in Ref. [24]. Next, we suppose that two quantum channels \(\mathcal {A}\) and \(\mathcal {B}\) sequentially apply to an optical system. The channel \(\mathcal {A}\) displaces amplitude of the optical system by \(\alpha \) with probability \(p(\alpha )\) and the channel \(\mathcal {B}\) by \(\beta \) with probability \(p(\beta )\). It is assumed that which one of the two channels applies first to the system is determined by a state of a control qubit. For instance, when the control qubit is initialized in a computational state \(\vert 0_{c}\rangle \) (\(\vert 1_{c}\rangle \)), the quantum channel \(\mathcal {B}\) (\(\mathcal {A}\)) affects the system first. Then, if the control qubit is prepared in a superposition state \(\vert \xi _{c}\rangle \), the state \(\hat{D}(\alpha ,\beta )(\hat{\rho }_{\text {in}}\otimes \vert \xi _{c}\rangle \langle \xi _{c}\vert )\hat{D}^{\dagger }(\alpha ,\beta )\) is obtained with probability \(p(\alpha )p(\beta )\), where \(\hat{D}(\alpha ,\beta )=\hat{D}(\alpha )\hat{D}(\beta )\otimes \vert 0_{c}\rangle \langle 0_{c}\vert +\hat{D}(\beta )\hat{D}(\alpha )\otimes \vert 1_{c}\rangle \langle 1_{c}\vert \). Hence, the output state of the optical system and the control qubit becomes \(\hat{W}_{\text {out}}=\int \frac{d^{2}\alpha }{\pi } \int \frac{d^{2}\beta }{\pi }p(\alpha )p(\beta ) \hat{D}(\alpha ,\beta )(\hat{\rho }_{\text {in}}\otimes \vert \xi _{c}\rangle \langle \xi _{c}\vert )\hat{D}^{\dagger }(\alpha ,\beta )\), which is equivalent to Eq. (5).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, M. Continuous variable teleportation with indefinite causal order. Quantum Inf Process 21, 367 (2022). https://doi.org/10.1007/s11128-022-03721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03721-4

Keywords

Navigation