Skip to main content
Log in

The effect of quantum memory on quantum speed limit time for CP-(in)divisible channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum speed limit time defines the limit on the minimum time required for a quantum system to evolve between two states. Investigation of bounds on speed limit time of quantum system under non-unitary evolution is of fundamental interest, as it reveals interesting connections to quantum (non-)Markovianity. Here, we discuss the characteristics of quantum speed limit time as a function of quantum memory, quantified as the deviation from temporal self-similarity of quantum dynamical maps for CP-divisible as well as indivisible maps, and show that the presence of quantum memory can speed up quantum evolution. This demonstrates the enhancement of the speed of quantum evolution in the presence of quantum memory for a wider class of channels than indicated by the CP-indivisibility criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Breuer, H.-P., Petruccione, F., et al.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  2. Banerjee, S.: Open Quantum Systems: Dynamics of Nonclassical Evolution. Springer, Berrlin (2018)

    Book  MATH  Google Scholar 

  3. Kumar, N.P., Banerjee, S., Chandrashekar, C.: Enhanced non-Markovian behavior in quantum walks with Markovian disorder. Sci. Rep. 8(1), 1–7 (2018)

    Google Scholar 

  4. Thomas, G., Siddharth, N., Banerjee, S., Ghosh, S.: Thermodynamics of non-Markovian reservoirs and heat engines. Phys. Rev. E 97(6), 062108 (2018)

    Article  ADS  Google Scholar 

  5. Shrikant, U., Srikanth, R., Banerjee, S.: Non-Markovian dephasing and depolarizing channels. Phys. Rev. A 98(3), 032328 (2018)

    Article  ADS  Google Scholar 

  6. Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25(03), 1850014 (2018)

    Article  MATH  Google Scholar 

  7. Bhattacharya, S., Banerjee, S., Pati, A.K.: Evolution of coherence and non-classicality under global environmental interaction. Quantum Inf. Process. 17(9), 1–30 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Naikoo, J., Dutta, S., Banerjee, S.: Facets of quantum information under non-Markovian evolution. Phys. Rev. A 99(4), 042128 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Utagi, S., Srikanth, R., Banerjee, S.: Ping-pong quantum key distribution with trusted noise: non-Markovian advantage. Quantum Inf. Process. 19(10), 1 (2020)

    Article  MathSciNet  Google Scholar 

  10. Naikoo, J., Banerjee, S., Chandrashekar, C.: Non-Markovian channel from the reduced dynamics of a coin in a quantum walk. Phys. Rev. A 102(6), 062209 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(9), 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Breuer, H.-P., Laine, E.-M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88(2), 021002 (2016)

    Article  ADS  Google Scholar 

  13. de Vicente, J., Spee, C., Sauerwein, D., Kraus, B.: Entanglement manipulation of multipartite pure states with finite rounds of classical communication. Phys. Rev. A 95(1), 012323 (2017)

    Article  ADS  Google Scholar 

  14. Li, L., Hall, M.J., Wiseman, H.M.: Concepts of quantum non-Markovianity: a hierarchy. Phys. Rep. 759, 1–51 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111(1), 010402 (2013)

    Article  ADS  Google Scholar 

  16. Liu, H.-B., Yang, W., An, J.-H., Xu, Z.-Y.: Mechanism for quantum speedup in open quantum systems. Phys. Rev. A 93(2), 020105 (2016)

    Article  ADS  Google Scholar 

  17. Cimmarusti, A., Yan, Z., Patterson, B., Corcos, L., Orozco, L., Deffner, S.: Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys. Rev. Lett. 114(23), 233602 (2015)

    Article  ADS  Google Scholar 

  18. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. 9, 249–254 (1945)

    MathSciNet  MATH  Google Scholar 

  19. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120(1–2), 188 (1998)

    Article  Google Scholar 

  20. Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103(16), 160502 (2009)

    Article  ADS  Google Scholar 

  21. Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A: Math. Theor. 50(45), 453001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67(5), 052109 (2003)

    Article  ADS  Google Scholar 

  23. Uhlmann, A.: An energy dispersion estimate. Phys. Lett. A 161(4), 329 (1992)

    Article  ADS  Google Scholar 

  24. Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A: Math. Theor. 46(33), 335302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110(5), 050402 (2013)

    Article  ADS  Google Scholar 

  26. del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110(5), 050403 (2013)

    Article  Google Scholar 

  27. Wu, S.-X., Yu, C.-S.: Quantum speed limit for a mixed initial state. Phys. Rev. A 98(4), 042132 (2018)

    Article  ADS  Google Scholar 

  28. Wu, S.-X., Yu, C.-S.: Quantum speed limit based on the bound of Bures angle. Sci. Rep. 10(1), 5500 (2020)

    Article  ADS  Google Scholar 

  29. Paulson, K.G., Satyanarayana, S.V.M.: Relevance of rank for a mixed state quantum teleportation resource. Quant. Inf. Compt. 14(13 &14), 1227–1237 (2014)

    MathSciNet  Google Scholar 

  30. Paulson, K.G., Satyanarayana, S.V.M.: Bounds on mixedness and entanglement of quantum teleportation resources. Phys. Lett. A 381(13), 1134 (2017)

    Article  ADS  MATH  Google Scholar 

  31. Teittinen, J., Lyyra, H., Maniscalco, S.: There is no general connection between the quantum speed limit and non-Markovianity. New J. Phys. 21(12), 123041 (2019)

    Article  MathSciNet  Google Scholar 

  32. Paulson, K.G., Panwar, E., Banerjee, S., Srikanth, R.: Hierarchy of quantum correlations under non-Markovian dynamics. Quantum Inf. Process. 20(4), 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  33. Utagi, S., Srikanth, R., Banerjee, S.: Temporal self-similarity of quantum dynamical maps as a concept of memorylessness. Sci. Rep. 10, 15049 (2020)

    Article  Google Scholar 

  34. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A: Math. Theor. 40(45), 13735 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ghosal, A., Das, D., Banerjee, S.: Characterizing qubit channels in the context of quantum teleportation. Phys. Rev. A 103(5), 052422 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  36. Funo, K., Shiraishi, N., Saito, K.: Speed limit for open quantum systems. New J. Phys. 21(1), 013006 (2019)

    Article  ADS  Google Scholar 

  37. Das, A., Bera, A., Chakraborty, S., Chruściński, D.: Thermodynamic quantities in quantum speed limit for non-Markovian dynamics, arXiv preprint arXiv:2105.15083 (2021)

  38. Yu, T., Eberly, J.: Entanglement evolution in a non-Markovian environment. Opti. Commun. 283(5), 676–680 (2010)

    Article  ADS  Google Scholar 

  39. Kumar, N.P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. Open Syst. Inf. Dyn. 25(03), 1850014 (2018)

    Article  MATH  Google Scholar 

  40. Mazzola, L., Piilo, J., Maniscalco, S.: Frozen discord in non-Markovian dephasing channels. Int. J. Quantum Inf. 9(03), 981–991 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miszczak, J.A., Puchała, Z., Horodecki, P., Uhlmann, A., Życzkowski, K.: Sub-and super-fidelity as bounds for quantum fidelity. Quant. Inf. Compt. 9, 0103–0130 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Campaioli, F., Pollock, F.A., Binder, F.C., Modi, K.: Tightening quantum speed limits for almost all states. Phys. Rev. Lett. 120(6), 060409 (2018)

    Article  ADS  Google Scholar 

  43. Paulson, K.G., Banerjee, S.: Quantum speed limit time: role of coherence as a dynamical witness to distinguish multi-qubit entangled states, arXiv preprint arXiv:2202.08078 (2022)

Download references

Acknowledgements

SB and RS acknowledge the support from the Interdisciplinary Cyber-Physical Systems (ICPS) programme of the Department of Science and Technology (DST), India, Grant No.: DST/ICPS/QuST/Theme-1/2019/6 and DST/ICPS/QuST/Theme-1/2019/14, respectively. RS also acknowledges the support of DST, India, Grant No. MTR/2019/001516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Paulson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

An MT type bound, in which speed limit is derived in terms of variance of the generator, was obtained as a function of quantum Fisher information for non-unitary evolution [25]. A bound on \({\mathcal {B}}(\rho _{0},\rho _{\tau })\) can be obtained in terms of the integral of the quantum Fisher information \(F_{Q}(t)\) along the evolution path. The Bures fidelity \({\mathcal {F}}\) (Eq. 16) is connected to the quantum Fisher information \(F_{Q}(t)\) [25],

$$\begin{aligned} {\mathcal {F}}(t,t+dt)=1-(dt)^2 F_{Q}(t)/4+{\mathcal {O}}(dt)^3. \end{aligned}$$
(A.1)

Quantum Fisher information is defined by \(F_{Q}(t)=\text {tr}[\rho (t)L^2(t)]\). Here, the Hermitian operator \({\hat{L}}(t)\) is known as the symmetric logarithimic derivative (SLD) operator. It is defined as \(d{\hat{\rho }}(t)/dt=({\hat{\rho }}(t){\hat{L}}(t)+{\hat{L}}(t)\hat{\rho (t)})/2\).

Fig. 5
figure 5

Quantum speed limit \(V_{QSL}\) is plotted as a function of the measure of non-Markovianity \(\zeta \) for OUN, RTN and NMAD channels. Quantum speed limit \(V_{QSL}\) is estimated for the initial states \(\frac{1}{\sqrt{2}}[\vert 0\rangle +\vert 1\rangle ]\) for OUN and RTN channels, and \(\vert 1\rangle \langle 1\vert \) for NMAD.The channel parameter \(\Gamma =0.1\mu \), \(\Gamma =\frac{1}{4}\mu \) and \(\frac{a}{\mu }=1\) for NMAD, OUN and RTN, respectively, for an actual driving time \(\tau =1\)

The instantaneous speed of evolution between two time intervals is proportional to the square root of quantum Fisher information. The upper bound on Bures angle is,

$$\begin{aligned} {\mathcal {B}}(\rho _{0},\rho _{\tau })=\arccos (\sqrt{{\mathcal {F}}(\rho _{0},\rho _{\tau })})\le \frac{1}{2}\int _{0}^{\tau }\sqrt{F_{Q}(t)} dt, \end{aligned}$$
(A.2)

and the quantum speed limit can be identified as,

$$\begin{aligned} V_{QSL}=\frac{1}{2}\sqrt{F_{Q}(t)}. \end{aligned}$$
(A.3)

This bound is attained only if the evolution occurs on a geodesic, a condition for the MT bound for unitary evolution under a time-independent Hamiltonian.

We estimate the quantum speed limit \(V_{QSL}\) in terms of quantum Fisher information for CP-divisible and CP-indivisible maps, for various initial pure states; \(\frac{1}{\sqrt{2}}(\vert 0\rangle +\vert 1\rangle )\) for OUN and RTN channels, and \(\vert 1\rangle \langle 1\vert \) for the non-Markovian amplitude damping channel. In Fig. 5, the quantum speed limit is seen to increase as non-Markovianity increases for both CP-divisible and indivisible channels. Thus, the evolution speed of quantum states is seen to increase with the strength of non-Markovianity.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulson, K.G., Banerjee, S. & Srikanth, R. The effect of quantum memory on quantum speed limit time for CP-(in)divisible channels. Quantum Inf Process 21, 335 (2022). https://doi.org/10.1007/s11128-022-03675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03675-7

Navigation