Skip to main content
Log in

Quantum separability criteria based on realignment moments

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement is the core resource in quantum information processing and quantum computing. It is a significant challenge to effectively characterize the entanglement of quantum states. Recently, elegant separability criterion is presented by Elben et al. (Phys Rev Lett 125:200501, 2020) based on the first three partially transposed (PT) moments of density matrices. Then, Yu et al. (Phys Rev Lett 127:060504, 2021) proposed two general powerful criteria based on the PT moments. In this paper, based on the realignment operations of matrices we propose entanglement detection criteria in terms of such realignment moments. We show by detailed example that the realignment moments can also be used to identify quantum entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, V.: In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175. IEEE (1984)

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Lioyd, S.: Universal quantum simulators. Science 273, 1073 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  7. Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Friis, N., Vitagliano, G., Malik, M., Huber, M.: Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72 (2019)

    Article  Google Scholar 

  10. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  11. Zhong, H.S., et al.: Quantum computational advantage using photons. Science 370(6523), 1460 (2020)

    Article  ADS  Google Scholar 

  12. Zhong, H.S., et al.: Phase-programmable Gaussian Boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021)

    Article  ADS  Google Scholar 

  13. Gong, M., et al.: Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372(6545), 948 (2021)

    Article  Google Scholar 

  14. Wu, Y., et al.: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021)

    Article  ADS  Google Scholar 

  15. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847 (1989)

    Article  ADS  Google Scholar 

  16. Paris, M., Rehacek, J.: Quantum state estimation. Lect. Notes Phys. 649, 7 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Elben, A., Vermersch, B., Roos, C.F., Zoller, P.: Statistical correlations between locally randomized measurements: a toolbox for probing entanglement in many-body quantum states. Phys. Rev. A 99, 052323 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Brydges, T., Elben, A., Jurcevic, P., Vermersch, B., Maier, C., Lanyon, B.P., Zoller, P., Blatt, R., Roos, C.F.: Probing Renyi entanglement entropy via randomized measurements. Science 364, 260 (2019)

    Article  ADS  Google Scholar 

  20. Ketterer, A., Wyderka, N., Güne, O.: Characterizing multipartite entanglement with moments of random correlations. Phys. Rev. Lett. 122, 120505 (2019)

    Article  ADS  Google Scholar 

  21. Knips, L., Dziewior, J., Klobus, W., Laskowski, W., Paterek, T., Shadbolt, P.J., Weinfurter, H., Meinecke, J.D.A.: Multipartite entanglement analysis from random correlations. NPJ Quantum Inf. 6, 51 (2020)

    Article  ADS  Google Scholar 

  22. Imai, S., Wyderka, N., Ketterer, A., Güne, O.: Bound entanglement from randomized measurements. Phys. Rev. Lett. 126, 150501 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. Elben, A., Kueng, R., Huang, H.Y.R., van Bijnen, R., Kokail, C., Dalmonte, M., Calabrese, P., Kraus, B., Preskill, J., Zoller, P., Vermersch, B.: Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020)

    Article  ADS  Google Scholar 

  24. Zhou, Y., Zeng, P., Liu, Z.: Single-copies estimation of entanglement negativity. Phys. Rev. Lett. 125, 200502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gray, J., Banchi, L., Bayat, A., Bose, S.: Machine-learning-assisted many-body entanglement measurement. Phys. Rev. Lett. 121, 150503 (2018)

    Article  ADS  Google Scholar 

  26. Huang, H.Y., Kueng, R., Preskill, J.: Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050 (2020)

    Article  Google Scholar 

  27. Yu, X.D., Imai, S., Gühne, O.: Optimal entanglement certification from moments of the partial transpose. Phys. Rev. Lett. 127, 060504 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. Calabrese, P., Cardy, J., Tonni, E.: Entanglement negativity in quantum field theory. Phys. Rev. Lett. 109, 130502 (2012)

    Article  ADS  Google Scholar 

  30. Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3(3), 193 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4(3), 219 (2005)

    Article  MathSciNet  Google Scholar 

  32. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

    Book  Google Scholar 

  33. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  34. Pitsianis, N.P.: The Kronecker Product in Approximation and Fast Transform Generation. Cornell University, New York (1997)

    Google Scholar 

  35. Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Entanglement detection beyond the cross-norm or realignment criterion. Phys. Rev. A 77, 060301(R) (2008)

    Article  ADS  Google Scholar 

  36. Gittsovich, O., Gühne, O., Hyllus, P., Eisert, J.: Unifying several separability conditions using the covariance matrix criterion. Phys. Rev. A 78, 052319 (2008)

    Article  ADS  Google Scholar 

  37. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  39. Jungnitsch, B., Moroder, T., Gühne, O.: Taming multi-particle entanglement. Phys. Rev. Lett. 106, 190502 (2011)

    Article  ADS  Google Scholar 

  40. Liu, Z., Zeng, P., Zhou Y., Gu, M.: Characterizing correlation within multipartite quantum systems via local randomized measurements. arXiv:2108.08045 [quant-ph](2021)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12126314, 12126351, 11861031, 12075159 and 12171044, Beijing Natural Science Foundation (Z190005), the Hainan Provincial Natural Science Foundation of China under Grant No.121RC539, and Academy for Multidisciplinary Studies, Capital Normal University. This project is also supported by the specific research fund of The Innovation Platform for Academicians of Hainan Province under Grant No. YSPTZX202215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinggui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Jing, N. & Fei, SM. Quantum separability criteria based on realignment moments. Quantum Inf Process 21, 276 (2022). https://doi.org/10.1007/s11128-022-03630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03630-6

Keywords

Navigation