Skip to main content
Log in

Average measurement-dependent symmetric discord

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The measurement-dependent symmetric quantum discord is defined as the measurement-induced disturbance, where the given local von Neumann measurement is performed locally on both subsystems. For general bipartite quantum systems, we investigate the average measurement-dependent symmetric quantum discord. It can be considered as an upper bound of the symmetric quantum discord and the difference between them can be considered as the evaluation error as a result of the lack of prior information. Firstly, we derive a product measure on the unitary group \(\mathrm {U}(d_{A})\otimes \mathrm {U}(d_{B})/\sim \) induced by the uniform Haar measure over the unitary group \(\mathrm {U}(d)\). Then applying this measure, we analyze integrals related to the measurement-dependent symmetric quantum discord over the unitary group and obtain analytic expressions for the average measurement-dependent symmetric quantum discord after parameterization. The expressions allow us to calculate the symmetric quantum discord in an average sense with relatively few parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179 (1984)

  3. Xu, F., Ma, X., Zhang, Q., Luo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899–6905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  7. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  8. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dakić, B., Vedral, V., Brukner, Č: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  10. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  11. Luo, S.L., Zhang, Q.: Observable correlations in two-qubit states. J. Stat. Phys. 136, 165–177 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  13. Zhu, X.N., Fei, S.M., Li-Jost, X.Q.: Analytical expression of quantum discord for rank-2 two-qubit states. Quantum Inf. Process. 17, 234 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhou, J.M., Hu, X.L., Jing, N.H.: Quantum discord of certain two-qubit states. Int. J. Theor. Phys. 59, 415–425 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vinjanampathy, S., Rau, A.R.P.: Quantum discord for qubit-qudit systems. J. Phys. A: Math. Theor. 45, 095303 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Rau, A.R.P.: Entanglement and discord for qubits and higher spin systems. Pramana-J. Phys. 83, 231–240 (2014)

    Article  ADS  Google Scholar 

  17. Ma, Z.H., Chen, Z.H., Fanchini, F.F., Fei, S.M.: Quantum discord for \(d\otimes 2\) systems. Sci. Rep. 5, 10262 (2015)

    Article  ADS  Google Scholar 

  18. Rau, A.R.P.: Calculation of quantum discord in higher dimensions for X- and other specialized states. Quantum Inf. Process 17, 216 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  20. Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. Europhys. Lett. 96, 60003 (2011)

    Article  ADS  Google Scholar 

  21. Chakrabarty, I., Pati, P.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605–612 (2011)

    Article  ADS  Google Scholar 

  22. Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

  23. Radhakrishnan, C., Lauriére, M., Byrnes, T.: Multipartite generalization of quantum discord. Phys. Rev. Lett. 124, 110401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2011)

    Article  ADS  Google Scholar 

  25. Bera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen, A., Sen, U.: Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys. 81, 024001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Luo, S., Fu, S.: Evaluating the geometric measure of quantum discord. Theor. Math. Phys. 171, 870–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. DiVincenzo, D.P., Horodecki, M., Leung, D.W., Smolin, J.A., Terhal, B.M.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92, 067902 (2004)

    Article  ADS  Google Scholar 

  28. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  29. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 119903 (2008)

    Article  ADS  Google Scholar 

  30. Wu, S.J., Poulsen, U.V., Mølmer, K.: Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality. Phys. Rev. A 80, 032319 (2009)

    Article  ADS  Google Scholar 

  31. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A: Math. Theor. 44, 352002 (2011)

    Article  MATH  Google Scholar 

  32. Einsiedler, M., Ward, T.: Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics, vol. 259. Springer, London (2011)

    MATH  Google Scholar 

  33. Hu, M.L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)

    Article  ADS  Google Scholar 

  34. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  35. Luo, S.L., Sun, Y.: Average versus maximal coherence. Phys. Lett. A 383, 2869–2873 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Jozsa, R., Robb, D., Wootters, W.K.: Lower bound for accessible information in quantum mechanics. Phys. Rev. A 49, 668–677 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  37. Datta, N., Dorlas, T., Jozsa, R., Benatti, F.: Properties of subentropy. J. Math. Phys. 55, 062203 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A: Math. Gen. 34, 7111–7125 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  40. Durt, T., Englert, B.G., Bengtsson, I., Życzkowski, K. On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)

  41. Datta, A., Shaji, A., Caves, C.M.: Quantum Discord and the Power of One Qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  42. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4016 (1999)

    Article  ADS  Google Scholar 

  43. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Key Research and Development Project of Guangdong Province under Grant No. 2020B0303300001 and the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515310016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Jun Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JW., Zheng, ZJ. Average measurement-dependent symmetric discord. Quantum Inf Process 21, 247 (2022). https://doi.org/10.1007/s11128-022-03599-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03599-2

Keywords

Navigation