Skip to main content
Log in

Geometric discord for multiqubit systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Radhakrishnan et al. (Phys. Rev. Lett. 124:110401, 2020) proposed quantum discord to multipartite systems and derived explicit formulae for any states. These results are significant in capturing quantum correlations for multiqubit systems. In this paper, we evaluate the geometric measure of multipartite quantum discord and obtain the results for a large family of multiqubit states. Furthermore, we investigated the dynamic behavior of geometric discord for the family of two-, three- and four-qubit states under phase noise acting on the first qubit. And we discover that sudden change of multipartite geometric discord can appear when phase noise act only on one part of the two-, three- and four-qubit states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  4. Sone, A., Zhuang, Q., Cappellaro, P.: Quantifying precision loss in local quantum thermometry via diagonal discord. Phys. Rev. A 98, 012115 (2018)

    Article  ADS  Google Scholar 

  5. Chanda, T., Das, T., Sadhukhan, D., Pal, A.K., Sen, A., Sen, U.: Reducing computational complexity of quantum correlations. Phys. Rev. A 92, 062301 (2015)

    Article  ADS  Google Scholar 

  6. Rana, S., Parashar, P.: Entanglement is not a lower bound for geometric discord. Phys. Rev. A 86, 030302(R) (2012)

    Article  ADS  Google Scholar 

  7. Luo, S.L.: Entanglement as minimal discord over state extensions. Phys. Rev. A 94, 032129 (2016)

    Article  ADS  Google Scholar 

  8. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  9. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A. 83, 052108 (2011)

    Article  ADS  Google Scholar 

  10. Hunt, M.A., Lerner, I.V., Yurkevich, I.V., Gefen, Y.: How to observe and quantify quantum-discord states via correlations. Phys. Rev. A 100, 022321 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  12. Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)

    Article  ADS  Google Scholar 

  13. Dakić, B., Lipp, Y.O., Ma, X.S., Ringbauer, M., Kropatschek, S.: Quantum discord as optimal resource for quantum communication. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  14. Modi, K., Vedral, V.: Unification of quantum and classical correlations and quantumness measures. AIP Conf. Proc. 1384, 69–75 (2011)

    Article  ADS  Google Scholar 

  15. Radhakrishnan, C., Laurière, M., Byrnes, T.: Multipartite generalization of quantum discord. Phys. Rev. Lett. 124, 110401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. Li, B., Zhu, C.L., Liang, X.B., Ye, B.L., Fei, S.M.: Quantum discord for multi-qubit systems. Phys. Rev. A 104, 012408 (2021)

    ADS  Google Scholar 

  17. Dakić, B., Vedral, V., Brukner, Č: Necessary and sufficient condition for Nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  18. Fel’dman, E.B., Kuznetsova, E.I., Yurishchev, M.A.: Quantum correlations in a system of nuclear s=1/2 spins in a strong magnetic field. J. Phys. A Math. Theor. 45, 475304 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  20. Costa, A.C.S., Angelo, R.M.: Bayes’ rule, generalized discord, and nonextensive thermodynamics. Phys. Rev. A 87, 032109 (2013)

    Article  ADS  Google Scholar 

  21. Zhou, J., Guo, H.: Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A 87, 062315 (2013)

    Article  ADS  Google Scholar 

  22. Bellomo, B., Lo Franco, R., Compagno, G.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A 86, 012312 (2012)

    Article  ADS  Google Scholar 

  23. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  24. Brown, E.G., Cormier, K., Martin-Martinez, E., Mann, R.B.: Vanishing geometric discord in noninertial frames. Phys. Rev. A 86, 032108 (2012)

    Article  ADS  Google Scholar 

  25. Miranowicz, A., Horodecki, P., Chhajlany, R.W., Tuziemski, J., Sperling, J.: Analytical progress on symmetric geometric discord: measurement-based upper bounds. Phys. Rev. A 86, 042123 (2012)

    Article  ADS  Google Scholar 

  26. Tufarelli, T., Girolami, D., Vasile, R., Bose, S., Adesso, G.: Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A 86, 052326 (2012)

    Article  ADS  Google Scholar 

  27. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012)

    Article  ADS  Google Scholar 

  28. Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 024302 (2012)

    Article  ADS  Google Scholar 

  29. Passante, G., Moussa, O., Laflamme, R.: Measuring geometric quantum discord using one bit of quantum information. Phys. Rev. A 85, 032325 (2012)

    Article  ADS  Google Scholar 

  30. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Chang, L.N., Luo, S.L.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  32. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  33. Hu, X.Y., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. Phys. Rev. A 87, 032340 (2013)

    Article  ADS  Google Scholar 

  34. Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)

    Article  ADS  Google Scholar 

  35. Paula, F.M., Oliveira, T., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  36. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  MATH  Google Scholar 

  37. Ługiewicz, P., Frydryszak, A., Jakóbczyk, L.: Two-qubit trace-norm geometric discord: the complete solution. Quantum Inf. Process. 18, 185 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. Maziero, J., Celeri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. Jia, L.X., Li, B., Yue, R.-H., Fan, H.: Sudden change of quantum discord under single qubit noise. Int. J. Quant. Inf. 11, 1350048 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yao, Y., Li, H.W., Yin, Z.Q., Han, Z.F.: Geometric interpretation of the geometric discord. Phys. Lett. A 376, 358 (2012)

    Article  ADS  MATH  Google Scholar 

  41. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  42. Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)

    Article  ADS  Google Scholar 

  43. Yan, X.Q., Liu, G.H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A 87, 022340 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC under numbers 12175147, 12075159 and 12171044, the GJJ170444, Beijing Natural Science Foundation (Z190005), Academy for Multidisciplinary Studies, Capital Normal University, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (No. SIQSE202001), and the Academician Innovation Platform of Hainan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, CL., Hu, B., Li, B. et al. Geometric discord for multiqubit systems. Quantum Inf Process 21, 264 (2022). https://doi.org/10.1007/s11128-022-03581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03581-y

Keywords

Navigation