Skip to main content
Log in

Pre- and post-processing in quantum-computational hydrologic inverse analysis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It was recently shown that certain subsurface hydrological inverse problems—here framed as determining the composition of an aquifer from pressure readings—can be solved on a quantum annealer. However, the quantum annealer performance suffered when solving problems where the aquifer was composed of materials with vastly different permeability, which is often encountered in practice. In this paper, we study why this regime is difficult and use several pre- and post-processing tools to address these issues. This study has three benefits: it improves quantum annealing performance for real-world problems in hydrology, it studies the scaling behavior for these problems (which were previously studied at a fixed size), and it elucidates a challenging class of problems that are amenable to quantum annealers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Of course, the values determined by FV did not necessarily agree with the actual values of \({\mathbf {k}}_{\mathrm{true}}\) due to the effects of noise.

References

  1. O’Malley, D.: An approach to quantum-computational hydrologic inverse analysis. Sci. Rep. 8(1), 6919 (2018)

    Article  ADS  Google Scholar 

  2. Lu, Z., Robinson, B.A.: Parameter identification using the level set method. Geophys. Res. Lett. 33, 6 (2006)

    Google Scholar 

  3. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., et al.: A benchmark study on problems related to co 2 storage in geologic formations. Comput. Geosci. 13(4), 409 (2009)

    Article  Google Scholar 

  4. Harp, D.R., Stauffer, P.H., O’Malley, D., Jiao, Z., Egenolf, E.P., Miller, T.A., Martinez, D., Hunter, K.A., Middleton, R.S., Bielicki, J.M., et al.: Development of robust pressure management strategies for geologic co2 sequestration. Int. J. Greenh. Gas Control 64, 43–59 (2017)

    Article  Google Scholar 

  5. Mackay, D.M., Cherry, J.A.: Groundwater contamination: pump-and-treat remediation. Environ. Sci. Technol. 23(6), 630–636 (1989)

    Article  ADS  Google Scholar 

  6. O’Malley, D., Vesselinov, V.V.: A combined probabilistic/nonprobabilistic decision analysis for contaminant remediation. SIAM/ASA J. Uncertain. Quantif. 2(1), 607–621 (2014)

    Article  MathSciNet  Google Scholar 

  7. O’Malley, D., Karra, S., Currier, R.P., Makedonska, N., Hyman, J.D., Viswanathan, H.S.: Where does water go during hydraulic fracturing? Groundwater 54(4), 488–497 (2016)

    Article  Google Scholar 

  8. Hyman, J.D., Jiménez-Martínez, J., Viswanathan, H.S., Carey, J.W.W.M., Porter, M.L., Rougier, E., Karra, S., Kang, Q., Chen, L., et al.: Understanding hydraulic fracturing: a multi-scale problem. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2078), 20150426 (2016)

    Article  ADS  Google Scholar 

  9. Lee, J., Kitanidis, P.K.: Large-scale hydraulic tomography and joint inversion of head and tracer data using the principal component geostatistical approach (PCGA). Water Resour. Res. 50(7), 5410–5427 (2014)

    Article  ADS  Google Scholar 

  10. Lin, Y., O’Malley, D., Vesselinov, V.V.: A computationally efficient parallel Levenberg–Marquardt algorithm for highly parameterized inverse model analyses. Water Resour. Res. 52(9), 6948–6977 (2016)

    Article  ADS  Google Scholar 

  11. Lin, Y., Le, E.B., O’Malley, D., Vesselinov, V.V., Bui-Thanh, T.: Large-scale inverse model analyses employing fast randomized reduction. Water Resour. Res. 53(8), 6784–6801 (2017)

    Article  ADS  Google Scholar 

  12. Mo, S., Zabaras, N., Shi, X., Jichun, W.: Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification. Water Resour. Res. 55(5), 3856–3881 (2019)

    Article  ADS  Google Scholar 

  13. O’Malley, D., Golden, J.K., Vesselinov, V.V.: Learning to regularize with a variational autoencoder for hydrologic inverse analysis. arXiv preprint arXiv:1906.02401 (2019)

  14. Boros, E., Hammer, P.L., Sun, R., Tavares, G.: Preprocessing of unconstrained quadratic binary optimization. Technical report, Rutgers University, Center for Operations Research (2006)

  15. Boros, E., Hammer, P.L., Sun, R., Tavares, G.: A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (qubo). Discrete Optim. 5(2), 501–529 (2008)

    Article  MathSciNet  Google Scholar 

  16. Dorband, J.E.: A method of finding a lower energy solution to a qubo/ising objective function. arXiv preprint arXiv:1801.04849 (2018)

  17. Ajagekar, A., You, F.: Quantum computing for energy systems optimization: challenges and opportunities. Energy 179, 76–89 (2019)

    Article  Google Scholar 

  18. Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., de Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10, 1053–1060 (2016)

    Article  ADS  Google Scholar 

  19. D-Wave Systems: D-Wave User Manual: Postprocessing Methods on D-Wave Systems. D-Wave Systems

  20. Karimi, H., Rosenberg, G.: Boosting quantum annealer performance via sample persistence. Quantum Inf. Process. 16(7), 166 (2017)

    Article  ADS  Google Scholar 

  21. Sax, I., Feld, S., Zelinski, S., Gabor, T., Linnhoff-Popien, C., Maurer, W.: Approximate approximation on a quantum annealer. In: Proceedings of the 17th ACM International Conference on Computing Frontiers, pp. 108–117 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Golden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golden, J.K., O’Malley, D. Pre- and post-processing in quantum-computational hydrologic inverse analysis. Quantum Inf Process 20, 176 (2021). https://doi.org/10.1007/s11128-021-03115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03115-y

Keywords

Navigation