Skip to main content
Log in

Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Let p be an odd prime and m be a positive integer, \(q=p^m\), \({\mathcal {R}}={\mathbb {F}}_q+u{\mathbb {F}}_q\) with \(u^2=u\), and \({\mathcal {S}}={\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q\) with \(u^2=u, v^2=v, uv=vu=0\) and \(\Lambda =(\lambda _1,\lambda _2,\lambda _3)\in {\mathbb {F}}_q{\mathcal {R}}{\mathcal {S}}\). In this paper, we study the algebraic structure of constacyclic codes over \({\mathcal {R}}\) and \({\mathcal {S}}\). Further, we discuss the structure of \({\mathbb {F}}_q{\mathcal {R}}{\mathcal {S}}\)-\(\Lambda \)-constacyclic codes of block length \((\alpha ,\beta ,\gamma )\). This family of codes can be viewed as \({\mathcal {S}}[x]\)-submodules of \(\frac{{\mathbb {F}}_q[x]}{\langle x^{\alpha }-\lambda _1\rangle }\times \frac{{\mathcal {R}}[x]}{\langle x^{\beta }-\lambda _2\rangle }\times \frac{{\mathcal {S}}[x]}{\langle x^{\gamma }-\lambda _3\rangle }\). The generator polynomials of this family of codes are discussed. As application, we discuss the construction of quantum error-correcting codes (QECCs) from constacyclic codes over \({\mathbb {F}}_q{\mathcal {R}}{\mathcal {S}}\) and obtain several new QECCs from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub, T., Siap, I., Aydin, N.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic and codes. IEEE Trans. Inf. Theory 60(3), 1508–1514 (2014)

    Article  Google Scholar 

  2. Ashraf, M., Mohammad, G.: Construction of quantum codes from cyclic codes over \({\mathbb{F}}_p+v{\mathbb{F}}_p\). Int. J. Inf. Coding Theory 3(2), 137–144 (2015)

    MathSciNet  Google Scholar 

  3. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over \({\mathbb{F}}_q+u{\mathbb{F}}_q+v{\mathbb{F}}_q+uv{\mathbb{F}}_q\). Quantum Inf. Process. 15(10), 4089–4098 (2016)

    ADS  MathSciNet  Google Scholar 

  4. Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F}}_p\) from cyclic codes over \({\mathbb{F}}_p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11(2), 325–335 (2019)

    MathSciNet  Google Scholar 

  5. Aydogdu, I., Abualrub, T., Siap, I.: On \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015)

    MathSciNet  Google Scholar 

  6. Aydogdu, I., Abualrub, T., Siap, I.: On \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017)

    Google Scholar 

  7. Aydogdu, I., Gursoy, F.: \({\mathbb{Z}}_2{\mathbb{Z}}_4{\mathbb{Z}}_8\)-Cyclic codes. J. Appl. Math. Comput. (2018). https://doi.org/10.1007/s12190-018-01216-z

    Article  Google Scholar 

  8. Aydogdu, I., Siap, I., Ten-Valls, R.: On the structure of \({\mathbb{Z}}_2{\mathbb{Z}}_2[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017)

    MathSciNet  Google Scholar 

  9. Aydogdu, I., Siap, I.: The structure of \({\mathbb{Z}}_2{\mathbb{Z}}_{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013)

    MathSciNet  Google Scholar 

  10. Bag, T., Dinh, H.Q., Upadhyay, A.K., Bandi, R., Yamaka, W.: Quantum codes from classes of skew constacyclic codes over the ring \({\mathbb{F}}_q[u, v]/\langle u^2-1, v^2-1, uv-vu \rangle \). Discrete Math. (2020). https://doi.org/10.1016/j.disc.2019.111737

    Google Scholar 

  11. Bag, T., Dertli, A., Cengellenmis, Y., Upadhyay, A.K.: Application of constacyclic codes over the semi local ring \(F_{p^m}+vF_{p^m}\). Indian J. Pure Appl. Math. 51(1), 265–275 (2020). https://doi.org/10.1007/s13226-020-0399-3

    MathSciNet  Google Scholar 

  12. Bag, T., Dinh, H.Q., Upadhyay, A.K., Yamaka, W.: New non-binary quantum codes from cyclic codes over product rings. IEEE Commun. Lett. 24(3), 486–490 (2020). https://doi.org/10.1109/LCOMM.2019.2959529

    Article  Google Scholar 

  13. Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: \({\mathbb{Z}}_2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018)

    Article  MathSciNet  Google Scholar 

  14. Borges, J., Fernández-Córdoba, C., Pujol, J., Rifa, J., Villanueva, M.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2009)

    Article  Google Scholar 

  15. Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory 62(11), 6348–6354 (2016)

    Article  Google Scholar 

  16. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  17. Brouwer, A.E., Hamalainen, H.O., Ostergard, P.R.J., Sloane, N.J.A.: Bounds on mixed binary/ternary codes. IEEE Trans. Inf. Theory 44(1), 140–161 (1998)

    Article  MathSciNet  Google Scholar 

  18. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error-correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  19. Diao, L., Gao, J., Lu, J.: Some results on \({\mathbb{Z}}_p{\mathbb{Z}}_p[v]\)-additive cyclic codes. Adv. Math. Commun. 14(4), 555–572 (2020)

    MathSciNet  Google Scholar 

  20. Dinh, H.Q., Bag, T., Upadhyay, A.K., Ashraf, M., Mohammad, G., Chinnakum, W.: Quantum codes from a class of constacyclic codes over finite commutative rings. J. Algebra Appl. 21(2150003), 1–19 (2021). https://doi.org/10.1142/S0219498821500031

    Article  MATH  Google Scholar 

  21. Dinh, H.Q., Bag, T., Upadhyay, A.K., Bandi, R., Chinnakum, W.: On the structure of cyclic codes over \({\mathbb{F}}_qRS\) and applications in quantum and LCD codes constructions. IEEE Access 8(1), 18902–18914 (2020). https://doi.org/10.1109/ACCESS.2020.2966542

    Google Scholar 

  22. Gao, J., Shi, M.J., Wu, T., Fu, F.W.: On double cyclic codes over \({\mathbb{Z}}_4\). Finite Fields Appl. 39, 233–250 (2016)

    MathSciNet  Google Scholar 

  23. Gao, J., Wang, Y.: \(u\)-Constacyclic codes over \({\mathbb{F}}_p+u{\mathbb{F}}_p\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process 17(4), 1–9 (2018)

    ADS  Google Scholar 

  24. Gowdhaman, K., Mohan, C., Chinnapillai, D., Gao, J.: Construction of quantum codes from \(\lambda \)-constacyclic codes over the ring \(\frac{{\mathbb{F}}_p[u, v]}{\langle u^3-u, v^3-v, uv-vu\rangle }\). J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01407-7

    Google Scholar 

  25. Guardia, G., Palazzo Jr., R.: Constructions of new families of nonbinary CSS codes. Discrete Math. 310, 2935–2945 (2010)

    Article  MathSciNet  Google Scholar 

  26. Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2, 55–64 (2004)

    Article  Google Scholar 

  27. Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Slone, N.J.A., Sole, P.: The \({\mathbb{Z}}_4\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40(4), 301–319 (1994)

    Google Scholar 

  28. Hill, R.: A First Course in Coding Theory. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  29. Hou, X., Gao, J.: \({\mathbb{Z}}_p{\mathbb{Z}}_p[v]\)-additive cyclic codes are asymptotically good. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01466-w

    Article  Google Scholar 

  30. Islam, H., Prakash, O.: New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf. Process. (2020). https://doi.org/10.1007/s11128-020-02825-z

    Article  MathSciNet  Google Scholar 

  31. Islam, H., Prakash, O., Verma, R.K.: New quantum codes from constacyclic codes over the ring \(R_{k, m}\). Adv. Math. Commun. (2020). https://doi.org/10.3934/amc.2020097

    Google Scholar 

  32. Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \({\mathbb{F}}_4+u{\mathbb{F}}_4\). Int. J. Quantum Inf. 9, 689–700 (2011)

    MathSciNet  Google Scholar 

  33. Li, J., Gao, J., Wang, Y.: Quantum codes from \((1-2v)\)-constacyclic codes over the ring \({\mathbb{F}}_q + u{\mathbb{F}}_q + v{\mathbb{F}}_q + uv{\mathbb{F}}_q\). Discrete Math. Algorithms Appl. (2018). https://doi.org/10.1142/S1793830918500465

    Google Scholar 

  34. Li, R., Xu, Z., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE Trans. Inf. Theory 50, 1331–1335 (2004)

    Article  MathSciNet  Google Scholar 

  35. Li, R., Xu, Z.: Construction of \([[n, n-4, 3]]_q\) quantum codes for odd prime power \(q\). Phys. Rev. A 82, 1–4 (2010)

    MathSciNet  Google Scholar 

  36. Ma, F., Gao, J., Fu, F.W.: Constacyclic codes over the ring \({\mathbb{F}}_q+v{\mathbb{F}}_q+v^2{\mathbb{F}}_q\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process 17(6), 1–19 (2018)

    Google Scholar 

  37. Ma, F., Gao, J., Fu, F.W.: New non-binary quantum codes from constacyclic codes over the ring \({\mathbb{F}}_q[u, v]/\langle u^2-1, v^2 -v, uv-vu\rangle \). Adv. Math. Commun. 13(3), 421–434 (2019)

    MathSciNet  Google Scholar 

  38. Mostafanasab, H.: Triple cyclic codes over \({\mathbb{Z}}_2\). Palest. J. Math. 6(II), 123–134 (2017)

    MathSciNet  Google Scholar 

  39. Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)

    Article  Google Scholar 

  40. Rifà, J., Pujol, J.: Translation invariant propelinear codes. IEEE Trans. Inf. Theory 43(2), 590–598 (1997)

    Article  MathSciNet  Google Scholar 

  41. Sari, M., Siap, I.: On quantum codes from cyclic codes over a class of nonchain rings. Bull. Korean Math. Soc. 53(6), 1617–1628 (2016)

    Article  MathSciNet  Google Scholar 

  42. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54, 4741–4751 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  44. Wu, T., Gao, J., Gao, Y., Fu, F.W.: \({\mathbb{Z}}_2{\mathbb{Z}}_2{\mathbb{Z}}_4\)-additive cyclic codes. Adv. Math. Commun. 12(4), 641–657 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers who have given us very thoughtful and helpful comments to improve the manuscript. The second and third authors are thankful to University Grant Commission (UGC), Govt. of India, for financial support. The authors are grateful to the Centre of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, for partial financial support. AKU thanks SERB DST for its support through Project No. MTR/2020/000006 under MATRICS scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., Pathak, S., Bag, T. et al. Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes. Quantum Inf Process 20, 150 (2021). https://doi.org/10.1007/s11128-021-03083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03083-3

Keywords

Mathematics Subject Classification

Navigation