Skip to main content
Log in

Nonclassicality and entanglement properties of non-Gaussian entangled states via a superposition of number-conserving operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We theoretically investigate the nonclassicality and entanglement properties of non-Gaussian entangled states generated by using a number-conserving generalized superposition of products (GSP), i.e., \(\left( saa^{\dag }+ta^{\dag }a\right) ^{m}\) with \(s^{2}+t^{2}=1\) on each mode of an input two-mode squeezed coherent (TMSC) state. The simulation results show that, compared to the typical two-mode squeezed vacuum state, the usage of small coherent amplitude is conductive to offering an opportunity for not only effectively enhancing the nonclassicality in terms of antibunching effect and Wigner function, but also significantly improving the entanglement quantified by Einstein–Podolsky–Rosen correlation and Hillery–Zubairy correlation. For the increase of the number of operations, the region of both the existing antibunching effect and the improved entanglement decreases, but this region of the improved teleportation fidelity and the negative distribution of the Wigner function is on the increase. Under an ideal Braunstein and Kimble teleportation protocol, when the generated states are treated as an entangled resource, the optimal teleportation fidelity can be achieved by taking a suitable squeezing parameter and the number of operations for the optimal choices of s. In order to highlight the advantages of the use of the GSP-embedded TMSC, under the same parameters, we also make a comparison about the performances of both the entanglement and the fidelity for different non-Gaussian entangled states, involving the photon-subtracted-then-added TMSC states and the photon-added-then-subtracted TMSC states. It is found that in the regime of small squeezing values, both of the entanglement and the fidelity for the generated states can perform better than the other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pezze, L., Smerzi, A., Oberthaler, M.K., Schmied, R., Treutlein, P.: Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018)

    MathSciNet  ADS  Google Scholar 

  2. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical ‘Schrodinger cats’ from photon number states. Nature 448, 784–786 (2007)

    ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    MathSciNet  MATH  ADS  Google Scholar 

  4. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Google Scholar 

  5. Braunstein, S.L., Loock, P.V.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  6. Osborne, T.J., Nielsen, M.A.: Entanglement, quantum phase transitions, and density matrix renormalization. Quantum Inf. Process. 1, 45–53 (2002)

    MathSciNet  Google Scholar 

  7. Karimi, A., Tavassoly, M.K.: Generation of entangled coherent-squeezed states: their entanglement and nonclassical properties. Quantum Inf. Process. 15, 1513–1527 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  8. Kwon, H., Tan, K.C., Volkoff, T., Jeong, H.: Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 122, 040503 (2019)

    ADS  Google Scholar 

  9. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    ADS  Google Scholar 

  10. Gerry, C.C., Campos, R.A.: Generation of maximally entangled states of a Bose–Einstein condensate and Heisenberg-limited phase resolution. Phys. Rev. A 68, 025602 (2003)

    ADS  Google Scholar 

  11. Eisert, J., Scheel, S., Plenio, M.B.: Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002)

    MathSciNet  MATH  ADS  Google Scholar 

  12. Yang, Y., Li, F.L.: Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315 (2019)

    ADS  Google Scholar 

  13. Marek, P., Jeong, H., Kim, M.S.: Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811 (2008)

    ADS  Google Scholar 

  14. Navarrete-Benlloch, C., Garcia-Patron, R., Shapiro, J.H., Cerf, N.J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86, 012328 (2012)

    ADS  Google Scholar 

  15. Lee, S.Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)

    ADS  Google Scholar 

  16. Hu, L.Y., Xu, X.X., Wang, Z.S., Xu, X.F.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82, 043842 (2010)

    ADS  Google Scholar 

  17. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)

    ADS  Google Scholar 

  18. Lee, S.Y., Ji, S.W., Kim, H.J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302 (2011)

    ADS  Google Scholar 

  19. Hu, L.Y., Al-amri, M., Liao, Z.Y., Zubairy, M.S.: Entanglement improvement via a quantum scissor in a realistic environment. Phys. Rev. A 100, 052322 (2019)

    ADS  Google Scholar 

  20. Hu, L.Y., Liao, Z.Y., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95, 012310 (2017)

    ADS  Google Scholar 

  21. Zhang, H., Ye, W., Xia, Y., Chang, S.K., Wei, C.P., Hu, L.Y.: Improvement of the entanglement properties for entangled states using a superposition of number-conserving operations. Laser Phys. Lett. 16, 085204 (2019)

    ADS  Google Scholar 

  22. Liu, C.J., Ye, W., Zhou, W.D., Zhang, H.L., Huang, J.H., Hu, L.Y.: Entanglement of coherent superposition of photon-subtraction squeezed vacuum. Front. Phys. 12, 120307 (2017)

    ADS  Google Scholar 

  23. Hu, L.Y., Zhang, Z.M.: Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability. J. Opt. Soc. Am. B 30, 518 (2013)

    ADS  Google Scholar 

  24. Zhou, W.D., Ye, W., Liu, C.J., Hu, L.Y., Liu, S.Q.: Entanglement improvement of entangled coherent state via multiphoton catalysis. Laser Phys. Lett. 15, 065203 (2018)

    ADS  Google Scholar 

  25. Namekata, N., Takahashi, Y., Fujii, G., Fukuda, D., Kurimura, S., Inoue, S.: Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength. Nat. Photon. 4, 655–660 (2010)

    ADS  Google Scholar 

  26. Zavatta, A., Parigi, V., Bellini, M.: Experimental noncls sicality of single-photon-added thermal light states. Phys. Rev. A 75, 052106 (2007)

    ADS  Google Scholar 

  27. Pegg, D.T., Phillips, L.S., Barnett, S.M.: Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–6 (1998)

    ADS  Google Scholar 

  28. Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)

    ADS  Google Scholar 

  29. Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99, 032327 (2019)

    ADS  Google Scholar 

  30. Ye, W., Zhong, H., Liao, Q., Huang, D., Hu, L.Y., Guo, Y.: Improvement of self-referenced continuous-variable quantum key distribution with quantum photon catalysis. Opt. Express 27, 17186–17198 (2019)

    ADS  Google Scholar 

  31. Guo, Y., Liao, Q., Wang, Y.J., Huang, D., Huang, P., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017)

    ADS  Google Scholar 

  32. Zhang, K.Z., Hu, L.Y., Ye, W., Liu, C.J., Xu, X.X.: Preparation and non-classicality of non-Gaussian quantum states based on catalytic quantum scissors. Laser Phys. Lett. 16, 015204 (2018)

    ADS  Google Scholar 

  33. Mehri-Dehnavi, H., Rahimi, R., Email, D., Mohammadzadeh, H., Ebadi, Z., Mirza, B.: Quantum teleportation with nonclassical correlated states in noninertial frames. Quantum Inf. Process. 14, 1025–1034 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  34. Banik, M., Gazi, M.R.: Classical communication and non-classical fidelity of quantum teleportation. Quantum Inf. Process. 12, 3607–3615 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  35. Ye, W., Guo, Y., Xia, Y., Zhong, H., Zhang, H., Ding, J.Z., Hu, L.Y.: Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Phys. Sin. 69, 060301 (2020)

    Google Scholar 

  36. Himadri, S.D., Arpita, C., Rupamanjari, G.: Generating continuous variable entangled states for quantum teleportation using a superposition of number-conserving operations. J. Phys. B: At. Mol. Opt. Phys. 48, 185502 (2015)

    Google Scholar 

  37. Chatterjee, A., Dhar, H.S., Ghosh, R.: Nonclassical properties of states engineered by superpositions of quantum operations on classical states. J. Phys. B: At. Mol. Opt. Phys. 45, 205501 (2012)

    ADS  Google Scholar 

  38. Kumar, C., Singh, J., Bose, S., Arvind: Coherence assisted non-Gaussian measurement device independent quantum key distribution. Phys. Rev. A 100, 052329 (2019)

    ADS  Google Scholar 

  39. Lee, C.T.: Many-photon anti-bunching in generalized pair coherent states. Phys. Rev. A 41, 1569–1575 (1990)

    ADS  Google Scholar 

  40. Fan, H.Y., Zaidi, H.R.: Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A 124, 303–307 (1987)

    MathSciNet  ADS  Google Scholar 

  41. Hillery, M., Zubairy, M.S.: Entanglement conditions for two-mode states: applications. Phys. Rev. A 74, 032333 (2006)

    ADS  Google Scholar 

  42. Hillery, M., Zubairy, M.S.: Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503 (2006)

    MathSciNet  ADS  Google Scholar 

  43. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    ADS  Google Scholar 

  44. Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306 (2006)

    ADS  Google Scholar 

  45. Hu, L.Y., Liao, Z.Y., Ma, S.L., Zubairy, M.S.: Optimal fdelity of teleportation with continuous variables using three tunable parameters in a realistic environment. Phys. Rev. A 93, 033807 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61821407, 11964013, 11664017), the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province, the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20190126) and the Postgraduate Independent Exploration and Innovation Project of Central South University (Grant No. 2019zzts070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Guo, Y., Zhang, H. et al. Nonclassicality and entanglement properties of non-Gaussian entangled states via a superposition of number-conserving operations. Quantum Inf Process 19, 245 (2020). https://doi.org/10.1007/s11128-020-02752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02752-z

Keywords

Navigation