Skip to main content
Log in

Estimation of entanglement in bipartite systems directly from tomograms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the advantages of extracting the degree of entanglement in bipartite systems directly from tomograms, as it is the latter that are readily obtained from experiments. This would provide a superior alternative to the standard procedure of assessing the extent of entanglement between subsystems after employing the machinery of state reconstruction from the tomogram. The latter is both cumbersome and involves statistical methods, while a direct inference about entanglement from the tomogram circumvents these limitations. In an earlier paper, we had identified a procedure to obtain a bipartite entanglement indicator directly from tomograms. To assess the efficacy of this indicator, we now carry out a detailed investigation using two nonlinear bipartite models by comparing this tomographic indicator with standard markers of entanglement such as the subsystem linear entropy and the subsystem von Neumann entropy and also with a commonly used indicator obtained from inverse participation ratios. The two-model systems selected for this purpose are a multilevel atom interacting with a radiation field, and a double-well Bose–Einstein condensate. The role played by the specific initial states of these two systems in the performance of the tomographic indicator is also examined. Further, the efficiency of the tomographic entanglement indicator during the dynamical evolution of the system is assessed from a time-series analysis of the difference between this indicator and the subsystem von Neumann entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ekert, A.K., Alves, C.M., Oi, D.K.L., Horodecki, M., Horodecki, P., Kwek, L.C.: Direct estimations of linear and nonlinear functionals of a quantum state. Phys. Rev. Lett. 88, 217901 (2002). https://doi.org/10.1103/PhysRevLett.88.217901

    Article  ADS  Google Scholar 

  2. Horodecki, P., Ekert, A.: Method for direct detection of quantum entanglement. Phys. Rev. Lett. 89, 127902 (2002). https://doi.org/10.1103/PhysRevLett.89.127902

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bovino, F.A., Castagnoli, G., Ekert, A., Horodecki, P., Alves, C.M., Sergienko, A.V.: Direct measurement of nonlinear properties of bipartite quantum states. Phys. Rev. Lett. 95, 240407 (2005). https://doi.org/10.1103/PhysRevLett.95.240407

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Blume-Kohout, R., Yin, J.O.S., van Enk, S.J.: Entanglement verification with finite data. Phys. Rev. Lett. 105, 170501 (2010). https://doi.org/10.1103/PhysRevLett.105.170501

    Article  ADS  Google Scholar 

  5. Li, X., Shang, J., Ng, H.K., Englert, B.G.: Optimal error intervals for properties of the quantum state. Phys. Rev. A 94, 062112 (2016). https://doi.org/10.1103/PhysRevA.94.062112

    Article  ADS  Google Scholar 

  6. Rohith, M., Sudheesh, C.: Signatures of entanglement in an optical tomogram. J. Opt. Soc. Am. B 33, 126 (2016). https://doi.org/10.1364/JOSAB.33.000126. URL http://josab.osa.org/abstract.cfm?URI=josab-33-2-126

    Article  Google Scholar 

  7. Laha, P., Lakshmibala, S., Balakrishnan, V.: Estimation of nonclassical properties of multiphoton coherent states from optical tomograms. J. Mod. Opt. 65, 1466 (2018). https://doi.org/10.1080/09500340.2018.1454527

    Article  ADS  Google Scholar 

  8. Rohith, M., Sudheesh, C.: Visualizing revivals and fractional revivals in a Kerr medium using an optical tomogram. Phys. Rev. A 92, 053828 (2015). https://doi.org/10.1103/PhysRevA.92.053828

    Article  ADS  Google Scholar 

  9. Sharmila, B., Saumitran, K., Lakshmibala, S., Balakrishnan, V.: Signatures of nonclassical effects in optical tomograms. J. Phys. B: At. Mol. Opt. 50, 045501 (2017). https://doi.org/10.1088/1361-6455/aa51a4

    Article  ADS  Google Scholar 

  10. Yu, T., Eberly, J.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Laha, P., Sudarsan, B., Lakshmibala, S., Balakrishnan, V.: Entanglement dynamics in a model tripartite quantum system. Int. J. Theor. Phys. 55, 4044 (2016)

    Article  MathSciNet  Google Scholar 

  12. Viola, L., Brown, W.G.: Generalized entanglement as a framework for complex quantum systems: purity versus delocalization measures. J. Phys. A: Math. Theor. 40, 8109 (2007). URL http://stacks.iop.org/1751-8121/40/i=28/a=S17

    Article  ADS  MathSciNet  Google Scholar 

  13. Brown, W.G., Santos, L.F., Starling, D.J., Viola, L.: Quantum chaos, delocalization, and entanglement in disordered Heisenberg models. Phys. Rev. E 77, 021106 (2008). https://doi.org/10.1103/PhysRevE.77.021106

    Article  ADS  MathSciNet  Google Scholar 

  14. Buccheri, F., De Luca, A., Scardicchio, A.: Structure of typical states of a disordered Richardson model and many-body localization. Phys. Rev. B 84, 094203 (2011). https://doi.org/10.1103/PhysRevB.84.094203

    Article  ADS  Google Scholar 

  15. Giraud, O., Martin, J., Georgeot, B.: Entropy of entanglement and multifractal exponents for random states. Phys. Rev. A 79, 032308 (2009). https://doi.org/10.1103/PhysRevA.79.032308

    Article  ADS  Google Scholar 

  16. Giraud, O., Martin, J., Georgeot, B.: Entanglement of localized states. Phys. Rev. A 76, 042333 (2007). https://doi.org/10.1103/PhysRevA.76.042333

    Article  ADS  MathSciNet  Google Scholar 

  17. Beugeling, W., Andreanov, A., Haque, M.: Global characteristics of all eigenstates of local many-body Hamiltonians: participation ratio and entanglement entropy. J. Stat. Mech. 2015, P02002 (2015). URL http://stacks.iop.org/1742-5468/2015/i=2/a=P02002

  18. Dukesz, F., Zilbergerts, M., Santos, L.F.: Interplay between interaction and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement. New J. Phys. 11, 043026 (2009). URL http://stacks.iop.org/1367-2630/11/i=4/a=043026

    Article  ADS  Google Scholar 

  19. Karthik, J., Sharma, A., Lakshminarayan, A.: Entanglement, avoided crossings, and quantum chaos in an Ising model with a tilted magnetic field. Phys. Rev. A 75, 022304 (2007). https://doi.org/10.1103/PhysRevA.75.022304

    Article  ADS  Google Scholar 

  20. Lakshminarayan, A., Srivastava, S.C.L., Ketzmerick, R., Bäcker, A., Tomsovic, S.: Entanglement and localization transitions in eigenstates of interacting chaotic systems. Phys. Rev. E 94, 010205 (2016). https://doi.org/10.1103/PhysRevE.94.010205

    Article  ADS  Google Scholar 

  21. Kannawadi, A., Sharma, A., Lakshminarayan, A.: Persistent entanglement in a class of eigenstates of quantum Heisenberg spin glasses. EPL 115, 57005 (2016). URL http://stacks.iop.org/0295-5075/115/i=5/a=57005

    Article  ADS  Google Scholar 

  22. Sanz, L., Moussa, M., Furuya, K.: Generation of generalized coherent states with two coupled Bose–Einstein condensates. Ann. Phys. (N.Y.) 321, 1206 (2006). https://doi.org/10.1016/j.aop.2005.09.003. URL http://www.sciencedirect.com/science/article/pii/S0003491605001569

    Article  ADS  MathSciNet  Google Scholar 

  23. Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a Kerr-like medium. Phys. Rev. A 39, 2969 (1989). https://doi.org/10.1103/PhysRevA.39.2969

    Article  ADS  Google Scholar 

  24. Mistakidis, S., Katsimiga, G., Kevrekidis, P., Schmelcher, P.: Correlation effects in the quench-induced phase separation dynamics of a two species ultracold quantum gas. New J. Phys. 20, 043052 (2018)

    Article  ADS  Google Scholar 

  25. Gross, C., Strobel, H., Nicklas, E., Zibold, T., Bar-Gill, N., Kurizki, G., Oberthaler, M.: Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219 (2011)

    Article  ADS  Google Scholar 

  26. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993). https://doi.org/10.1103/PhysRevLett.70.1244

    Article  ADS  Google Scholar 

  27. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847 (1989). https://doi.org/10.1103/PhysRevA.40.2847

    Article  ADS  Google Scholar 

  28. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: An introduction to the tomographic picture of quantum mechanics. Phys. Script. 79, 065013 (2009). URL http://stacks.iop.org/1402-4896/79/i=6/a=065013

    Article  ADS  Google Scholar 

  29. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299 (2009). https://doi.org/10.1103/RevModPhys.81.299

    Article  ADS  Google Scholar 

  30. Weigert, S., Wilkinson, M.: Mutually unbiased bases for continuous variables. Phys. Rev. A 78, 020303 (2008). https://doi.org/10.1103/PhysRevA.78.020303

    Article  ADS  MathSciNet  Google Scholar 

  31. Sudheesh, C., Lakshmibala, S., Balakrishnan, V.: Manifestations of wave packet revivals in the moments of observables. Phys. Lett. A 329, 14 (2004). https://doi.org/10.1016/j.physleta.2004.06.085. URL http://www.sciencedirect.com/science/article/pii/S0375960104009132

    Article  ADS  Google Scholar 

  32. Biswas, A., Agarwal, G.S.: Nonclassicality and decoherence of photon-subtracted squeezed states. Phys. Rev. A 75, 032104 (2007). https://doi.org/10.1103/PhysRevA.75.032104

    Article  ADS  Google Scholar 

  33. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer, New York (1996)

    Book  Google Scholar 

  34. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983). https://doi.org/10.1103/PhysRevLett.50.346

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Local Lyapunov exponents computed from observed data. J. Nonlinear Sci. 2, 343 (1992). https://doi.org/10.1007/BF01208929

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413 (1999)

    Article  ADS  Google Scholar 

  37. Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A.: Priority choice experimental two-qubit tomography: measuring one by one all elements of density matrices. Sci. Rep. 6, 19610 (2016)

    Article  ADS  Google Scholar 

  38. Opatrný, T., Welsch, D.G.: Density-matrix reconstruction by unbalanced homodyning. Phys. Rev. A 55, 1462 (1997). https://doi.org/10.1103/PhysRevA.55.1462

    Article  ADS  Google Scholar 

  39. Brida, G., Genovese, M., Gramegna, M., Traina, P., Predazzi, E., Olivares, S., Paris, M.: Toward a full reconstruction of density matrix by on/off measurements. Int. J. Quant. Inf. 7, 27 (2009)

    Article  Google Scholar 

  40. Lvovsky, A.: Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B: Quant. Semiclass. Opt. 6(6), S556 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (SL) thanks M. Santhanam of IISER Pune for discussions pertaining to inverse participation ratios.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sharmila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Reconstructing a single-mode vacuum state from the tomogram

For our present purpose, we start with the tomogram for a zero-photon state obtained numerically from the corresponding density matrix. The aim is to demonstrate how to reconstruct the state from this tomogram. Since we have the exact density matrix (equivalently, state) to compare it with, we can assess the efficiency of the reconstruction program. The procedure we employ is based on iterative maximum likelihood estimates. Here, starting with a trial density matrix, an appropriate transformation outlined in [40] is applied iteratively on the density matrix to achieve a reconstructed state with the maximum possible likelihood of being the true state (here, the vacuum state). It is evident that the choice of the trial state is crucial for the efficiency of this procedure. Figure 14a–c shows the different reconstructed states arising from three different trial density matrices. Figure 14d is the photon number distribution of the true state. It is evident that Fig. 14c is closer to the true state compared to Fig. 14a, b. However, the probability of the zero-photon state is only \(\sim 0.85\) compared to 1 in Fig. 14d.

Fig. 14
figure 14

Photon number distribution of the reconstructed state corresponding to trial density matrix a \(0.1\sum _{p=0}^{9} |p\rangle \langle p|\), b \(0.2\sum _{p=0}^{4} |p\rangle \langle p|\) and c \(0.9 |0\rangle \langle 0| + 0.1 |1\rangle \langle 1|\). d Photon number distribution of the true state \(|0\rangle \langle 0|\)

More sophisticated techniques will lead to a reconstructed state closer to the zero-photon state. However, these are computationally intensive even in this case and significantly more time-consuming for bipartite and multipartite states. It is therefore useful and efficient to extract as much information about a state directly from tomograms as possible.

Appendix 2: Time evolution in the double-well BEC model

The double-well BEC effective Hamiltonian is given by Eq. (24). We require the state \(|\psi (t)\rangle \) corresponding to an initial state that is a direct product of normalized boson-added coherent states of the atoms in the wells A and B, namely,

$$\begin{aligned} |\psi _{m_{1},m_{2}}(0)\rangle = |\alpha _{a}, m_{1}\rangle \otimes |\alpha _{b}, m_{2}\rangle , \end{aligned}$$
(30)

where \(\alpha _{a}, \alpha _{b} \in \mathbb {C}\) and \(m_{1}, m_{2}\) are nonnegative integers. The dependence of the state on \(\alpha _{a}\) and \(\alpha _{b}\) has been suppressed on the left-hand side for notational simplicity. The m-PACS \(|\alpha , m\rangle \) [defined in Eq. (17)] reduces to the standard oscillator coherent state \(|\alpha \rangle \) for \(m = 0\).

In the special case \(m_{1} = 0, m_{2} = 0\), the state at any time t corresponding to the initial state \(\psi _{0,0}(0)\) has been shown in Ref. [22] to be given by

$$\begin{aligned} |\psi _{00} (t)\rangle&= \mathrm{{e}}^{-\tfrac{1}{2}(|\alpha _{a}|^{2} + |\alpha _{b}|^{2})} \sum _{p,q=0}^{\infty } \frac{\beta _{1}^{p}(t) \, \beta _{2}^{q}(t)}{\sqrt{p! q!}} \nonumber \\&\quad \mathrm{{e}}^{- i t (p+q)[\omega _{0} + U (p + q)]} |p\rangle \otimes |q\rangle , \end{aligned}$$
(31)

where

$$\begin{aligned} \left. \begin{array}{lll} \beta _{1}(t) &{} = &{} \alpha _{a} \cos \,(\lambda _{1} t) + (i/\lambda _{1}) ( \lambda \alpha _{b} - \omega _{1} \alpha _{a}) \sin \,(\lambda _{1} t),\\ \beta _{2}(t) &{} = &{} \alpha _{b} \cos \,(\lambda _{1} t) + (i/\lambda _{1}) ( \lambda \alpha _{a} + \omega _{1} \alpha _{b}) \sin \,(\lambda _{1} t), \end{array} \right\} \end{aligned}$$
(32)

and \(\lambda _{1}=(\lambda ^{2}+ \omega _{1}^{2})^{1/2}\). It can then be shown [9] that the state vector at time t is given by

$$\begin{aligned} |\psi _{m_{1},m_{2}}(t)\rangle = M_{m_{1},m_{2}}(t)|\psi _{00}(t)\rangle , \end{aligned}$$
(33)

where the operator \(M_{m_{1},m_{2}}(t)\) is as follows. Let klpq denote nonnegative integers, and let

$$\begin{aligned} s = k+l+p+q, \, \overline{p} =(k+m_{2}-l), \,\overline{q} =(l+m_{1}-k). \end{aligned}$$
(34)

Further, let

$$\begin{aligned} \kappa = \big [m_{1}! m_{2}! L_{m_{1}}(-|\alpha _{a}|^{2}) L_{m_{2}}(-|\alpha _{b}|^{2})\big ]^{-1/2} \end{aligned}$$
(35)

and \(\Gamma =\cos ^{-1}(\omega _{1}/\lambda _{1})\). Then

$$\begin{aligned} M_{m_{1},m_{2}}(t)= & {} \kappa \left\{ \sum _{k=0}^{m_{1}}\sum _{l=0}^{m_{2}}\sum _{p=0}^{\overline{p}}\sum _{q=0}^{\overline{q}}(-1)^{k-p} {\genfrac(){0.0pt}1{m_{1}}{k}} {\genfrac(){0.0pt}1{m_{2}}{l}} \, {\genfrac(){0.0pt}1{\overline{p}}{p}} \, {\genfrac(){0.0pt}1{\overline{q}}{q}}\, \mathrm{{e}}^{2i(l-k)\lambda _{1} t}\right. \nonumber \\&\,\left. \times \big (\cos \,\tfrac{1}{2}\Gamma \big )^{s} \big (\sin \,\tfrac{1}{2}\Gamma \big )^{2(m_{1}+m_{2})- s} (a^{\dagger })^{p+\overline{q}-q} \,(b^{\dagger })^{q+\overline{p}-p}\right\} \nonumber \\&\,\times \mathrm{{e}}^{-i\omega _{0} t(m_{1}+m_{2}) +i\lambda _{1}t (m_{1}- m_{2})} \mathrm{{e}}^{-i U t (m_{1}+m_{2}) (2 N_\mathrm{{tot}} + m_{1}+m_{2})}. \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmila, B., Lakshmibala, S. & Balakrishnan, V. Estimation of entanglement in bipartite systems directly from tomograms. Quantum Inf Process 18, 236 (2019). https://doi.org/10.1007/s11128-019-2352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2352-0

Keywords

Navigation