Skip to main content
Log in

Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum private comparison (QPC) protocol can guarantee the two participants to compare the equality of their private information without leaking them. Based on the entanglement swapping between the four-qubit cluster state and extended Bell state, an efficient QPC protocol has been proposed. Three bits of the secret inputs have been compared in each comparison time, which improves the efficiency compared with the previous QPC protocols’ one or two bits. Then, based on a random sequence pre-shared between the two participants, the semi-honest third party can only execute the protocol’s process without obtaining the information of the participants’ secrets and comparison results. Last, various kinds of attacks have been analyzed, which show that the proposed protocol is secure against the outside and participants attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  2. Li, J., Li, N., Zhang, Y., Wen, S., et al.: Special issue on quantum communication: a survey on quantum cryptography. Chin. J. Electron. 27(2), 223–228 (2018)

    Article  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one and two particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6(28767), 1–6 (2016)

    Google Scholar 

  6. Li, L.L., Li, J., Li, H.J., Tian, Y., Zheng, Y., Yang, Y.G.: Deterministic quantum secure direct communication protocol based on Omega state. IEEE Access 7, 6915–6921 (2019)

    Article  Google Scholar 

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  9. Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., et al.: Cryptanalysis of secret sharing with a single \(d\)-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(1), 19 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Yang, Y.G., Lei, A.H., Liu, A.Z., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  15. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  16. Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, Cloudcroft, America, pp. 13–22. ACM, New York (2001)

  17. Shor, Peter W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonanome, M., Bužek, V., Hillery, M., et al.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84(2), 022331 (2011)

    Article  ADS  Google Scholar 

  19. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  20. Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)

    Article  ADS  Google Scholar 

  21. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Economical quantum anonymous transmissions. J. Phys. B At. Mol. Opt. Phys. 43(24), 245501 (2010)

    Article  ADS  Google Scholar 

  22. Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751–780 (2007)

    Article  MATH  Google Scholar 

  23. Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)

    Article  ADS  Google Scholar 

  24. Zhao, Z., Naseri, M., Zheng, Y.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)

    Article  ADS  Google Scholar 

  25. Jia, H.Y., Wen, Q.Y., Song, T.T., et al.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wen, L., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  29. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with \(W\) state. Opt. Commun. 284(12), 3160–3163 (2011)

    ADS  Google Scholar 

  30. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, J., Zhou, H.F., Jia, L., et al.: An efficient protocol for the private comparison of equal information based on four-particle entangled \(W\) state and Bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Wei, H., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)

    Article  ADS  Google Scholar 

  33. Chen, X.B., Dou, Z., Xu, G., et al.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13(1), 85–100 (2014)

    Article  ADS  MATH  Google Scholar 

  34. Liu, X., Zhang, B., Wang, J., et al.: Differential phase shift quantum private comparison. Quantum Inf. Process. 13(1), 71–84 (2014)

    Article  ADS  Google Scholar 

  35. Li, J., Jia, L., Zhou, H.F., et al.: Secure quantum private comparison protocol based on the entanglement swapping between three-particle \(W\)-class state and bell state. Int. J. Theor. Phys. 55(3), 1710–1718 (2016)

    MATH  Google Scholar 

  36. Xu, L., Zhao, Z.: Quantum private comparison protocol based on the entanglement swapping between \(\chi ^+\) state and \(W\)-class state. Quantum Inf. Process. 16(12), 302 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Xu, L., Wang, J., Ahmed, H., et al.: A new quantum private comparison protocol. In: AOPC 2017: Fiber Optic Sensing and Optical Communications. International Society for Optics and Photonics, vol. 10464, p. 104640M (2017)

  38. Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16(7), 180 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Gao, X., Zhang, S.B., Chang, Y., et al.: Cryptanalysis of the quantum private comparison protocol based on the entanglement swapping between three-particle \(W\)-class state and Bell state. Int. J. Theor. Phys. 57(6), 1–7 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  41. Hein, M., Dür, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71(3), 032350 (2005)

    Article  ADS  Google Scholar 

  42. Walther, P., Resch, K.J., Rudolph, T., et al.: Experimental one-way quantum computing. Nature 434(7030), 169 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. U1636106 and 61671087), Natural Science Foundation of Beijing Municipality under Grant 4182006, The Major Science and Technology Support Program of Guizhou Province under Grant 20183001, The Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant 2018BDKFJJ016 and BUPT Excellent Ph.D. Students Foundation (Grant No. CX2019227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiubo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, X., Li, H. et al. Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Inf Process 18, 158 (2019). https://doi.org/10.1007/s11128-019-2266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2266-x

Keywords

Navigation