Skip to main content
Log in

Mimicking the Hadamard discrete-time quantum walk with a time-independent Hamiltonian

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The discrete-time quantum walk dynamics can be generated by a time-dependent Hamiltonian, repeatedly switching between the coin and the shift generators. We change the model and consider the case where the Hamiltonian is time-independent, including both the coin and the shift terms in all times. The eigenvalues and the related Bloch vectors for the time-independent Hamiltonian are then compared with the corresponding quantities for the effective Hamiltonian generating the quantum walk dynamics. Restricted to the non-localized initial quantum walk states, we optimize the parameters in the time-independent Hamiltonian such that it generates a dynamics similar to the Hadamard quantum walk. We find that the dynamics of the walker probability distribution and the corresponding standard deviation, the coin-walker entanglement, and the quantum-to-classical transition of the discrete-time quantum walk model can be approximately generated by the optimized time-independent Hamiltonian. We, further, show both dynamics are equivalent in the classical regime, as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013)

    Book  MATH  Google Scholar 

  2. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110, 190601 (2013)

    Article  ADS  Google Scholar 

  5. Cedzich, C., Rybár, T., Werner, A.H., Alberti, A., Genske, M., Werner, R.F.: Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111, 160601 (2013)

    Article  ADS  Google Scholar 

  6. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  7. Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11(5), 1107–1148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86, 195414 (2012)

    Article  ADS  Google Scholar 

  9. Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88, 121406 (2013)

    Article  ADS  Google Scholar 

  10. Obuse, H., Asbóth, J.K., Nishimura, Y., Kawakami, N.: Unveiling hidden topological phases of a one-dimensional hadamard quantum walk. Phys. Rev. B 92, 045424 (2015)

    Article  ADS  Google Scholar 

  11. Cedzich, C., Grünbaum, F., Stahl, C., Velázquez, L., Werner, A., Werner, R.: Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 49(21), 21LT01 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schumacher, B., Werner, R.F.: Reversible quantum cellular automata. arXiv preprint arXiv:quant-ph/0405174 (2004)

  13. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11(1), 13–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Ariano, G.M., Perinotti, P.: Derivation of the dirac equation from principles of information processing. Phys. Rev. A 90, 062106 (2014)

    Article  ADS  Google Scholar 

  15. Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Weyl, dirac and maxwell quantum cellular automata. Found. Phys. 45(10), 1203–1221 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals, Emended edn. Dover Publications Inc, Mineola (2005)

    MATH  Google Scholar 

  17. D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Path-integral solution of the one-dimensional dirac quantum cellular automaton. Phys. Lett. A 378(43), 3165–3168 (2014)

    Article  ADS  MATH  Google Scholar 

  18. D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Discrete feynman propagator for the weyl quantum walk in 2 + 1 dimensions. EPL 109(4), 40012 (2015)

    Article  ADS  Google Scholar 

  19. D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Path-sum solution of the weyl quantum walk in 3 + 1 dimensions. Philos. Trans. R. Soc. A 375(2106), 20160394 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bisio, A., D’Ariano, G., Mosco, N., Perinotti, P., Tosini, A.: Solutions of a two-particle interacting quantum walk. Entropy 20(6), 435 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  22. Travaglione, B., Milburn, G.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2002)

    Article  ADS  Google Scholar 

  23. D’Ariano, G.M., Mosco, N., Perinotti, P., Tosini, A.: Discrete time dirac quantum walk in 3+1 dimensions. Entropy 18(6), 228 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Strauch, F.W.: Relativistic quantum walks. Phys. Rev. A 73, 054302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Strauch, F.W.: Relativistic effects and rigorous limits for discrete- and continuous-time quantum walks. J. Math. Phys. 48(8), 082102 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Suzuki, M.: Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. J. Math. Phys. 26, 601 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Suzuki, M.: Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 51(2), 183–190 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Pollard, D.: A User’s Guide to Measure Theoretic Probability, vol. 8. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  29. Alagic, G., Russell, A.: Decoherence in quantum walks on the hypercube. Phys. Rev. A 72, 062304 (2005)

    Article  ADS  Google Scholar 

  30. Drezgich, M., Hines, A.P., Sarovar, M., Sastry, S.: Complete characterization of mixing time for the continuous quantum walk on the hypercube with markovian decoherence model. Quantum Inf. Comput. 9(9), 856–878 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Artiles, L.M., Gill, R.D., Guta, M.I.: An invitation to quantum tomography. J. R. Stat. Soc. B 67(1), 109–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dajka, J., Łuczka, J., Hänggi, P.: Distance between quantum states in the presence of initial qubit-environment correlations: a comparative study. Phys. Rev. A 84, 032120 (2011)

    Article  ADS  Google Scholar 

  33. Belavkin, V.P., D’Ariano, G.M., Raginsky, M.: Operational distance and fidelity for quantum channels. J. Math. Phys. 46(6), 062106 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Marian, P., Marian, T.A.: Hellinger distance as a measure of Gaussian discord. J. Phys. A Math. Theor. 48(11), 115301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Roga, W., Spehner, D., Illuminati, F.: Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations. J. Phys. A Math. Theor. 49(23), 235301 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Suciu, S., Isar, A.: Gaussian geometric discord in terms of hellinger distance. AIP Conf. Proc. 1694, 020013 (2015)

    Article  Google Scholar 

  37. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  38. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  39. Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  40. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)

    Article  ADS  Google Scholar 

  41. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104(10), 100503 (2010)

    Article  ADS  Google Scholar 

  42. Sanders, B.C., Bartlett, S.D., Tregenna, B., Knight, P.L.: Quantum quincunx in cavity quantum electrodynamics. Phys. Rev. A 67(4), 042305 (2003)

    Article  ADS  Google Scholar 

  43. Hardal, A.Ü., Xue, P., Shikano, Y., Müstecaplıoğlu, Ö.E., Sanders, B.C.: Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit. Phys. Rev. A 88(2), 022303 (2013)

    Article  ADS  Google Scholar 

  44. Moqadam, J.K., Portugal, R., de Oliveira, M.C.: Quantum walks on a circle with optomechanical systems. Quantum Inf. Process. 14(10), 3595–3611 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ramasesh, V.V., Flurin, E., Rudner, M., Siddiqi, I., Yao, N.Y.: Direct probe of topological invariants using Bloch oscillating quantum walks. Phys. Rev. Lett. 118, 130501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  46. Flurin, E., Ramasesh, V.V., Hacohen-Gourgy, S., Martin, L.S., Yao, N.Y., Siddiqi, I.: Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X 7, 031023 (2017)

    Google Scholar 

  47. Suzuki, M.: On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants. Commun. Math. Phys. 57(3), 193–200 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  49. Kendon, V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci. 17(06), 1169–1220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JKM acknowledges financial support from Iran’s National Elites Foundation, Grant No. 7000/2000-1396/03/08. MCO acknowledges supports by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) through the Research Center in Optics and Photonics (CePOF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Khatibi Moqadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Shift operator in the Fourier basis

The action of the Shift operator (2) on the Fourier basis is calculated as

$$\begin{aligned} S\;|\tilde{k}\rangle \otimes |s\rangle&= S \frac{1}{\sqrt{d}}\sum _n e^{- i \tilde{k} n } |n\rangle \otimes |s\rangle \nonumber \\&= \frac{1}{\sqrt{d}}\sum _n e^{- i \tilde{k} n } S|n\rangle \otimes |s\rangle \nonumber \\&= \frac{1}{\sqrt{d}}\sum _n e^{- i \tilde{k} n } |n+(-1)^s\rangle \otimes |s\rangle \nonumber \\&= \frac{1}{\sqrt{d}}\sum _{n'} e^{- i \tilde{k} [n' - (-1)^s] } |n'\rangle \otimes |s\rangle \end{aligned}$$
(A1)
$$\begin{aligned}&= e^{i \tilde{k} (-1)^s } \frac{1}{\sqrt{d}}\sum _{n'} e^{- i \tilde{k} n' } |n'\rangle \otimes |s\rangle \nonumber \\&= e^{i \tilde{k} (-1)^s } |\tilde{k}\rangle \otimes |s\rangle , \end{aligned}$$
(A2)

where in (A1) n is replaced by \(n' = n + (-1)^s\), and Eq. (3) in Sect. 2 is then proved. The shift operator S is diagonal in the Fourier basis, hence,

$$\begin{aligned} S&= \sum _k \biggl (|\tilde{k}\rangle \langle \tilde{k}| \otimes |0\rangle \langle 0| e^{i\tilde{k}} + |\tilde{k}\rangle \langle \tilde{k}| \otimes |1\rangle \langle 1| e^{-i\tilde{k}} \biggr ) \nonumber \\&= \sum _k |\tilde{k}\rangle \langle \tilde{k}| \otimes \biggl ( e^{i\tilde{k}} |0\rangle \langle 0| + e^{-i\tilde{k}} |1\rangle \langle 1| \biggr ) \nonumber \\&= \sum _k |\tilde{k}\rangle \langle \tilde{k}| \otimes \begin{pmatrix} e^{i\tilde{k}} &{}\quad 0 \\ 0 &{}\quad e^{-i\tilde{k}} \end{pmatrix} \nonumber \\&= \sum _k |\tilde{k}\rangle \langle \tilde{k}| \otimes e^{i\tilde{k}\sigma _z}, \end{aligned}$$
(A3)

proving Eq. (4) in Sect. 2.

Bloch vectors

The Bloch vectors in Eq. (7) are obtained by substituting Eq. (1) together with

$$\begin{aligned} e^{i\tilde{k}\sigma _z} = \begin{pmatrix} e^{i\tilde{k}} &{}\quad 0 \\ 0 &{}\quad e^{-i\tilde{k}} \end{pmatrix}, \end{aligned}$$
(B1)

and

$$\begin{aligned} e^{-i \epsilon _\theta (\tilde{k}) \varvec{d}_\theta (\tilde{k}).\varvec{\sigma }} = \cos \epsilon _\theta (\tilde{k}) \; \mathbb {1}_2 - i \sin \epsilon _\theta (\tilde{k}) \begin{pmatrix} d_z &{}\quad d_x-id_y \\ d_x+id_y &{}\quad -d_z \\ \end{pmatrix}, \end{aligned}$$
(B2)

in Eq. (6) where \(\varvec{d}_\theta (\tilde{k})\) is supposed to be a unite vector with the components \((d_x,d_y,d_z)\) and \(\mathbb {1}_2\) is the identity of the two-dimensional spin Hilbert space. Equation (6) also gives the dispersion relation.

Circuit QED

The Hamiltonian of the system is given by the Jaynes-cummings model including the terms corresponding to the two-level atom, the quantized field and the atom-field interaction [50]

$$\begin{aligned} {H}_\mathrm {JC} = \frac{1}{2} \omega _q \sigma _z + \omega _r a^{\dagger } a + g_\mathrm {qr} (a^{\dagger } \sigma ^- + a \sigma ^+), \end{aligned}$$
(C1)

where \(\sigma ^+\) (\(\sigma ^-\)) is the rising (lowering) operator of the atom. To control the state of the qubit (realizing the spin rotation), the system is irradiated by a microwave field with a frequency close to the qubit’s frequency

$$\begin{aligned} {H}_\mathrm{d} = \varepsilon (t)( a^{\dagger }e^{-i\omega _\mathrm{d} t} + ae^{i\omega _\mathrm{d} t} ). \end{aligned}$$
(C2)

In the large detuning regime (\(g_\mathrm {qr}\ll \varDelta =\omega _q-\omega _r\)), by applying the unitary transformation \( U = e^{(a\sigma ^+ - a^{\dagger }\sigma ^-)g_\mathrm {qr}/\varDelta }\) on the total Hamiltonian and expanding the result up to the second order in \(g/\varDelta \), we obtain

$$\begin{aligned} U ({H}_\mathrm {JC} + {H}_\mathrm{d}) U^{\dagger } \approx&\; \frac{1}{2} \left( \omega _q + \frac{g_\mathrm {qr}^2}{\varDelta }\right) \sigma _z + (\omega _r + \frac{g_\mathrm {qr}^2}{\varDelta } \sigma _z) a^{\dagger } a + \nonumber \\&\varepsilon (t) \left[ \left( a^{\dagger } + \frac{g_\mathrm {qr}}{\varDelta } \sigma ^{+}\right) e^{- i \omega _\mathrm{d} t} + \left( a + \frac{g_\mathrm {qr}}{\varDelta } \sigma ^{-}\right) e^{ i \omega _\mathrm{d} t}\right] . \end{aligned}$$
(C3)

Switching to the frame rotating at the drive frequency \(\omega _\mathrm{d}\) by applying the transformation \(V=e^{i \omega _\mathrm{d} a^{\dagger }at}\) leads to Eq. (27) in Sect. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatibi Moqadam, J., de Oliveira, M.C. Mimicking the Hadamard discrete-time quantum walk with a time-independent Hamiltonian. Quantum Inf Process 18, 141 (2019). https://doi.org/10.1007/s11128-019-2262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2262-1

Keywords

Navigation