Skip to main content
Log in

Relations among k-ME concurrence, negativity, polynomial invariants, and tangle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The k-ME concurrence as a measure of multipartite entanglement (ME) unambiguously detects all k-nonseparable states in arbitrary dimensions and satisfies many important properties of an entanglement measure. Negativity is a simple computable bipartite entanglement measure. Invariant and tangle are useful tools to study the properties of the quantum states. In this paper, we mainly investigate the internal relations among the k-ME concurrence, negativity, polynomial invariants, and tangle. Strong links between k-ME concurrence and negativity as well as between k-ME concurrence and polynomial invariants are derived. We obtain the quantitative relation between k-ME \((k=n)\) concurrence and negativity for all n-qubit states, give an exact value of the n-ME concurrence for the mixture of n-qubit GHZ states and white noise, and derive an connection between k-ME concurrence and tangle for n-qubit W state. Moreover, we find that for any 3-qubit pure state the k-ME concurrence \((k=2, 3)\) is related to negativity, tangle, and polynomial invariants, while for 4-qubit states the relations between k-ME concurrence (for \(k = 2, 4)\) and negativity, and between k-ME concurrence and polynomial invariants also exist. Our work provides clear quantitative connections between k-ME concurrence and negativity, and between k-ME concurrence and polynomial invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horodecki, R., et al.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. 84, 50001 (2008)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gross, C., et al.: Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165 (2010)

    Article  ADS  Google Scholar 

  7. Eltschka, C., Siewert, J.: Quantifying entanglement resources. J. Phys. A Math. Theor. 47, 424005 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H., et al.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  10. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  11. Rungta, P., et al.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  13. Hong, Y., Gao, T., Yan, F.L.: Measure of multipartite entanglement with computable lower bounds. Phys. Rev. A 86, 062323 (2012)

    Article  ADS  Google Scholar 

  14. Gao, T., Hong, Y.: Detection of genuinely entangled and nonseparable \(n\)-partite quantum states. Phys. Rev. A 82, 062113 (2010)

    Article  ADS  Google Scholar 

  15. Gao, T., et al.: Efficient \(k\)-separability criteria for mixed multipartite quantum states. Europhys. Lett. 104, 20007 (2013)

    Article  ADS  Google Scholar 

  16. Gao, T., Yan, F.L., van Enk, S.J.: Permutationally invariant part of a density matrix and nonseparability of \(N\)-qubit states. Phys. Rev. Lett. 112, 180501 (2014)

    Article  ADS  Google Scholar 

  17. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  18. Dür, W., et al.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lee, S., et al.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)

    Article  ADS  Google Scholar 

  21. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47, 355 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sharma, S.S., Sharma, N.K.: Quantum coherences, \(K\)-way negativities and multipartite entanglement. Phys. Rev. A 77, 042117 (2008)

    Article  ADS  Google Scholar 

  23. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Liu, B., et al.: Local unitary classification of arbitrary dimensional multipartite pure states. Phys. Rev. Lett. 108, 050501 (2012)

    Article  ADS  Google Scholar 

  26. Wang, S.H., Lu, Y., Long, G.L.: Entanglement classification of \(2\times 2 \times 2 \times d\) quantum systems via the ranks of the multiple coefficient matrices. Phys. Rev. A 87, 062305 (2013)

    Article  ADS  Google Scholar 

  27. Li, X.R., Li, D.F.: Polynomial invariants of degree \(4\) for even-\(n\) qubits and their applications in entanglement classification. Phys. Rev. A 88, 022306 (2013)

    Article  ADS  Google Scholar 

  28. Sanz, M., et al.: Entanglement classification with algebraic geometry. J. Phys. A Math. Theor. 50, 195303 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Grassl, M., Rötteler, M., Beth, T.: Computing local invariants of quantum-bit systems. Phys. Rev. A 58, 1833 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. Linden, N., et al.: On multi-particle entanglement. Fortsch. Phys. 46, 567 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92, 042307 (2015)

    Article  ADS  Google Scholar 

  33. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  35. Dür, W., Cirac, J.I.: Classification of multiqubit mixed states: separability and distillability properties. Phys. Rev. A 61, 042314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. Gao, T., Hong, Y.: Separability criteria for several classes of \(n\)-partite quantum states. Eur. Phys. J. D 61, 765 (2011)

    Article  ADS  Google Scholar 

  37. Sudbery, A.: On local invariants of pure three-qubit states. J. Phys. A Math. Gen. 34, 643 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  38. Barnum, H., Linden, N.: Monotones and invariants for multi-particle quantum states. J. Phys. A Math. Gen. 34, 6787 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. Verstraete, F., et al.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. Gorbachev, V.N., et al.: Can the states of the W-class be suitable for teleportation? Phys. Lett. A 314, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  41. Joo, J., et al.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  42. Joo, J., et al.: Quantum secure communication with W states. arXiv:quant-ph/0204003

  43. Cabello, A.: Bell’s theorem with and without inequalities for the three-qubit Greenberger–Horne–Zeilinger and W states. Phys. Rev. A 65, 032108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11475054 and the Hebei Natural Science Foundation under Grant Nos. A2016205145 and A2018205125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gao, T. & Yan, F. Relations among k-ME concurrence, negativity, polynomial invariants, and tangle. Quantum Inf Process 18, 194 (2019). https://doi.org/10.1007/s11128-019-2223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2223-8

Navigation