Skip to main content
Log in

Decoherence factor in quantum phase transition

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As a fundamental quantity in quantum dynamics, decoherence factor reflects the influence on the system brought by the environment. In this work, we mainly investigate the dynamical behavior of decoherence factor in the quantum phase transition progresses, from the perspective of its phase information, amplitude information, real part information, and imaginary part information. Through two significant models, we show that most of these quantities can act as a witness of quantum phase transition phenomena and correctly reveal the locations of the critical points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79 (1970)

    Article  ADS  Google Scholar 

  4. Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. III. Phys. Rev. A 3, 2137 (1971)

    Article  ADS  Google Scholar 

  5. Haviland, D.B., Liu, Y., Goldman, A.M.: Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989)

    Article  ADS  Google Scholar 

  6. van der Zant, H.S.J., Fritschy, F.C., Elion, W.E., Geerligs, L.J., Mooij, J.E.: Field-induced superconductor-to-insulator transition in Josephson junction arrays. Phys. Rev. Lett. 69, 2971–2974 (1992)

    Article  ADS  Google Scholar 

  7. Greiner, M., Mandel, O., Esslinger, T., Hansch, T.W., Bloch, I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  8. Landau, L.D., Lifschitz, E.M.: Statistical Physics: Course of Theoretical Physics. Pergamon, London (1958)

    Google Scholar 

  9. Resnick, D.J., Garland, J.C., Boyd, J.T., Shoemaker, S., Newrock, R.S.: Kosterlitz–Thouless transition in proximity-coupled superconducting arrays. Phys. Rev. Lett. 47, 1542 (1981)

    Article  ADS  Google Scholar 

  10. Kosterlitz, J.M., Thouless, D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  11. Wen, X.G.: Quantum Field Theory of Many-Body Systems. Oxford University Press, New York (2004)

    Google Scholar 

  12. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)

    Article  ADS  Google Scholar 

  13. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  14. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lu, X.-M., Sun, Z., Wang, X., Zanardi, P.: Operator fidelity susceptibility, decoherence, quantum criticality. Phys. Rev. A 78, 032309 (2008)

    Article  ADS  Google Scholar 

  16. Kwok, H.-M., Ning, W.-Q., Gu, S.-J., Lin, H.-Q.: Quantum criticality of the Lipkin–Meshkov–Glick model in terms of fidelity susceptibility. Phys. Rev. E 78, 032103 (2008)

    Article  ADS  Google Scholar 

  17. Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Luo, D.-W., Xu, J.-B.: Trace distance and scaling behavior of a coupled cavity lattice at finite temperature. Phys. Rev. A 87, 013801 (2013)

    Article  ADS  Google Scholar 

  19. Ma, J., Wang, X.: Fisher information and spin squeezing in the Lipkin–Meshkov–Glick model. Phys. Rev. A 80, 012318 (2009)

    Article  ADS  Google Scholar 

  20. Liu, W.-F., Ma, J., Wang, X.: Quantum Fisher information and spin squeezing in the ground state of the XY model. J. Phys. A Math. Theor. 46, 045302 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wang, T.-L., Wu, L.-N., Yang, W., Jin, G.-R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Song, H., Luo, S., Fu, S.: Quantum criticality from Fisher information. Quantum Inf. Process. 16, 91 (2017)

    Article  ADS  Google Scholar 

  23. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  24. Zanardi, P., Quan, H.T., Wang, X., Sun, C.P.: Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 75, 032109 (2007)

    Article  ADS  Google Scholar 

  25. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  26. Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323 (2011)

    Article  ADS  Google Scholar 

  27. Zanardi, P., Paris, M.G.A., Venuti, L.C.: Quantum criticality as a resource for quantum estimation. Phys. Rev. A 78, 042105 (2008)

    Article  ADS  Google Scholar 

  28. Invernizzi, C., Korbman, M., Venuti, L.C., Paris, M.G.A.: Optimal quantum estimation in spin systems at criticality. Phys. Rev. A 78, 042106 (2008)

    Article  ADS  Google Scholar 

  29. Salvatori, G., Mandarino, A., Paris, M.G.A.: Quantum metrology in Lipkin–Meshkov–Glick critical systems. Phys. Rev. A 90, 022111 (2014)

    Article  ADS  Google Scholar 

  30. Fernández-Lorenzo, S., Porras, D.: Quantum sensing close to a dissipative phase transition: symmetry breaking and criticality as metrological resources. Phys. Rev. A 96, 013817 (2017)

    Article  ADS  Google Scholar 

  31. Jaseem, N., Omkar, S., Shaji, A.: Quantum critical environment assisted quantum magnetometer. J. Phys. A Math. Theor. 51, 17 (2018)

    Article  MathSciNet  Google Scholar 

  32. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  33. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. Damski, B., Quan, H.T., Zurek, W.H.: Critical dynamics of decoherence. Phys. Rev. A 83, 062104 (2011)

    Article  ADS  Google Scholar 

  35. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  36. Chen, J.-J., Cui, J., Zhang, Y.-R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)

    Article  ADS  Google Scholar 

  37. Malvezzi, A.L., Karpat, G., Çakmak, B., Fanchini, F.F., Debarba, T., Vianna, R.O.: Quantum correlations and coherence in spin-1 Heisenberg chains. Phys. Rev. B 93, 184428 (2016)

    Article  ADS  Google Scholar 

  38. Zhang, G.-Q., Xu, J.-B.: Quantum coherence of an XY spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition. J. Phys. A Math. Theor. 50, 265303 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  40. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  41. Baumann, K., Guerlin, C., Brennecke, F., Esslinger, T.: Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  42. Fröhlich, H.: Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Phys. Rev. 79, 85 (1950)

    Article  Google Scholar 

  43. Nakajima, S.: Perturbation theory in statistical mechanics. Adv. Phys. 4, 363 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  44. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  45. Huang, J.-F., Li, Y., Liao, J.-Q., Kuang, L.-M., Sun, C.P.: Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality. Phys. Rev. A 80, 063829 (2009)

    Article  ADS  Google Scholar 

  46. Yuan, J.-B., Kuang, L.-M.: Quantum-discord amplification induced by a quantum phase transition via a cavity-Bose–Einstein-condensate system. Phys. Rev. A 87, 024101 (2013)

    Article  ADS  Google Scholar 

  47. Wu, W., Xu, J.-B.: Geometric phase, quantum Fisher information, geometric quantum correlation and quantum phase transition in the cavity-Bose–Einstein-condensate system. Quantum Infor. Process. 15, 3695–3709 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. Emary, C., Brandes, T.: Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model. Phys. Rev. Lett. 90, 044101 (2003)

    Article  ADS  Google Scholar 

  49. Emary, C., Brandes, T.: Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E 67, 066203 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  50. Yuan, Z.-G., Zhang, P., Li, S.-S.: Disentanglement of two qubits coupled to an XY spin chain: Role of quantum phase transition. Phys. Rev. A 76, 042118 (2007)

    Article  ADS  Google Scholar 

  51. Li, Y.-C., Lin, H.-Q., Xu, J.-B.: Dynamics of correlations and scaling behaviors in a spin-chain environment. Europhys. Lett. 100, 20002 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China, Grant Nos. 11605284, 61703364, and the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT1800409). Y.M. acknowledges support by the DFG and the ERC (Consolidator Grant 683107/TempoQ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Pan, Y. & Mao, Y. Decoherence factor in quantum phase transition. Quantum Inf Process 18, 92 (2019). https://doi.org/10.1007/s11128-019-2210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2210-0

Keywords

Navigation