Skip to main content
Log in

Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study a scheme of quantum simulator for two-dimensional xy-model Hamiltonian. Previously, the quantum simulator for a coupled cavity array spin model has been explored, but the coupling strength is fixed by the system parameters. In the present scheme, several cavity resonators can be coupled with each other simultaneously via an ancilla qubit. In the two-dimensional Kagome lattice of the resonators, the hopping of resonator photonic modes gives rise to the tight-binding Hamiltonian which in turn can be transformed to the quantum xy-model Hamiltonian. We employ the transmon as an ancilla qubit to achieve in situ controllable xy-coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  2. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)

    Article  Google Scholar 

  3. Buluta, I., Nori, F.: Quantum simulators. Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  4. Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  5. Xue, P., Ficek, Z., Sanders, B.C.: Probing multipartite entanglement in a coupled Jaynes–Cummings system. Phys. Rev. A 86, 043826 (2012)

    Article  ADS  Google Scholar 

  6. Greentree, A.D., Tahan, C., Cole, J.H., Hollenberg, L.C.L.: Quantum phase transitions of light. Nat. Phys. 2, 856 (2006)

    Article  Google Scholar 

  7. Schmidt, S., Blatter, G.: Strong coupling theory for the Jaynes–Cummings–Hubbard model. Phys. Rev. Lett. 103, 086403 (2009)

    Article  ADS  Google Scholar 

  8. Koch, J., Le Hur, K.: Superfluid–Mott-insulator transition of light in the Jaynes–Cummings lattice. Phys. Rev. A 80, 023811 (2009)

    Article  ADS  Google Scholar 

  9. Fan, J., Zhang, Y., Wang, L., Mei, F., Chen, G., Jia, S.: Superfluid–Mott-insulator quantum phase transition of light in a two-mode cavity array with ultrastrong coupling. Phys. Rev. A 95, 033842 (2017)

    Article  ADS  Google Scholar 

  10. Bernien, H. et al.: Probing many-body dynamics on a 51-atom quantum simulator Nature. 551, 579 (2017)

  11. Zhang, J., et al.: Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601 (2017)

    Article  ADS  Google Scholar 

  12. Houck, A.A., Türeci, H.E., Koch, J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292 (2012)

    Article  Google Scholar 

  13. Schmidt, S., Koch, J.: Circuit QED lattices: towards quantum simulation with superconducting circuits. Ann. Phys. (Berlin) 525, 395 (2013)

    Article  ADS  Google Scholar 

  14. Kim, M.D., Kim, J.: Coupling qubits in circuit-QED cavities connected by a bridge qubit. Phys. Rev. A 93, 012321 (2016)

    Article  ADS  Google Scholar 

  15. Kim, M.D., Kim, J.: Scalable quantum computing model in the circuit-QED lattice with circulator function. Quantum Inf. Process. 16, 192 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501 (2007)

    Article  ADS  Google Scholar 

  17. Angelakis, D.G., Santos, M.F., Bose, S.: Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007)

    Article  ADS  Google Scholar 

  18. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  19. Steffen, M., Kumar, S., DiVincenzo, D.P., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B.: High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)

    Article  ADS  Google Scholar 

  20. Inomata, K., Yamamoto, T., Billangeon, P.-M., Nakamura, Y., Tsai, J.S.: Large dispersive shift of cavity resonance induced by a superconducting flux qubit in the straddling regime. Phys. Rev. B 86, 140508(R) (2012)

    Article  ADS  Google Scholar 

  21. Houck, A.A., Schuster, D.I., Gambetta, J.M., Schreier, J.A., Johnson, B.R., Chow, J.M., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Generating single microwave photons in a circuit. Nature 449, 328 (2007)

    Article  ADS  Google Scholar 

  22. Hofheinz, M., Weig, E.M., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Martinis, J.M., Cleland, A.N.: Generation of Fock states in a superconducting quantum circuit. Nature 454, 310 (2008)

    Article  ADS  Google Scholar 

  23. Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546 (2009)

    Article  ADS  Google Scholar 

  24. Mielke, A.: Exact ground states for the Hubbard model on the Kagome lattice. J. Phys. A. 25, 4335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. You, Y.-Z., Chen, Z., Sun, X.-Q., Zhai, H.: Superfluidity of bosons in Kagome lattices with frustration. Phys. Rev. Lett. 109, 265302 (2012)

    Article  ADS  Google Scholar 

  26. Petrescu, A., Houck, A.A., Hur, K.L.: Anomalous Hall effects of light and chiral edge modes on the Kagome lattice. Phys. Rev. A 86, 053804 (2012)

    Article  ADS  Google Scholar 

  27. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  28. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  29. Zeytinoğlu, S., Pechal, M., Berger, S., Abdumalikov Jr., A.A., Wallraff, A., Filipp, S.: Microwave-induced amplitude- and phase-tunable qubit-resonator coupling in circuit quantum electrodynamics. Phys. Rev. A 91, 043846 (2015)

    Article  ADS  Google Scholar 

  30. Keller, A.J., Dieterle, P.B., Fang, M., Berger, B., Fink, J.M., Painter, O.: Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017)

    Article  ADS  Google Scholar 

  31. Bosman, S.J., Gely, M.F., Singh, V., Bothner, D., Castellanos-Gomez, A., Steele, G.A.: Approaching ultrastrong coupling in transmon circuit QED using a high-impedance resonator. Phys. Rev. B 95, 224515 (2017)

    Article  ADS  Google Scholar 

  32. Kollár, A.J., Fitzpatrick, M., Houck, A.A.: Hyperbolic Lattices in Circuit Quantum Electrodynamics. arXiv:1802.09549

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0023467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mun Dae Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.D. Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling. Quantum Inf Process 18, 54 (2019). https://doi.org/10.1007/s11128-019-2173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2173-1

Keywords

Navigation