Skip to main content
Log in

Maximally entangled states in discrete and Gaussian regimes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study a relation between discrete-variable quantum states and continuous-variable (especially, restricted on Gaussian) ones. In the previous work, we have investigated an information-theoretic correspondence between the Gaussian maximally mixed states and their purifications as Gaussian maximally entangled states in Jeong and Lim (Phys Lett A 380:3607, 2016). We here compare the purified continuous-variable maximally entangled state with a two-mode squeezed vacuum state, which is a conventional entangled state in Gaussian regime, by the explicit calculation of quantum fidelities between those states and an \(N\times N\)-dimensional maximally entangled state in the finite Hilbert space. Consequently, we naturally conclude that the purified maximally entangled state is more suitable to the Gaussian maximally entangled state than the two-mode squeezed vacuum state, in a sense that it might be useful for continuous-variable quantum information tasks in which entangled states are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  Google Scholar 

  4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8, New York (1984)

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321, 1812 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)

    Article  Google Scholar 

  10. Li, K., Winter, A., Zou, X., Guo, G.: Private capacity of quantum channels is not additive. Phys. Rev. Lett. 103, 120501 (2009)

    Article  ADS  Google Scholar 

  11. Einstein, A., Podolsky, B., Rogen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  12. Eisert, J., Wolf, M.M.: Continuous-variable quantum information science. In: Leuchs, G., Cerf, N., Polzik, E. (eds.) Quantum Information with Continuous Variables, Part II: Optical continuous variables. Imperial College Press, London (2005)

    Google Scholar 

  13. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  14. Brukner, C̆., Kim, M.S., Pan, J.-W., Zeilinger, A.: Correspondence between continuous-variable and discrete quantum systems of arbitrary dimensions. Phys. Rev. A 68, 062105 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  17. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  18. Vollbrecht, K.G.H., Muschik, C.A., Cirac, J.I.: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011)

    Article  ADS  Google Scholar 

  19. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)

    Article  ADS  Google Scholar 

  21. Banaszek, K., Wódkiewicz, K.: Nonlocality of the Einstein–Podolsky–Rosen state in the phase space. Acta Phys. Slov. 49, 491 (1999)

    MATH  Google Scholar 

  22. Facchi, P., Florio, G., Lupo, C., Mancini, S., Pascazio, S.: Gaussian maximally multipartite entangled states. Phys. Rev. A 80, 062311 (2009)

    Article  ADS  Google Scholar 

  23. Jeong, K., Lim, Y.: Purification of Gaussian maximally mixed states. Phys. Lett. A 380, 3607 (2016)

    Article  ADS  Google Scholar 

  24. Brádler, K.: Continuous-variable private quantum channel. Phys. Rev. A 72, 042313 (2005)

    Article  ADS  Google Scholar 

  25. Jeong, K., Kim, J., Lee, S.-Y.: Gaussian private quantum channel with squeezed coherent states. Sci. Rep. 5, 13974 (2015)

    Article  ADS  Google Scholar 

  26. de Palma, G., Mari, A., Giovannetti, V., Holevo, A.S.: Normal form decomposition for Gaussian-to-Gaussian superoperators. J. Math. Phys. 56, 052202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. Fu, L.-B., Chen, J.-L., Zhao, X.-G.: Maximal violation of the Clauser–Horne–Shimony–Holt inequality for two qutrits. Phys. Rev. A 68, 022323 (2003)

    Article  ADS  Google Scholar 

  29. Kaszlikowski, D., Kwek, L.C., Chen, J.L., Żukowski, M., Oh, C.H.: Clauser–Horne inequality for three-state systems. Phys. Rev. A 65, 032118 (2002)

    Article  ADS  Google Scholar 

  30. Chen, J.-L., Kaszlikowski, D., Kwek, L.C., Oh, C.H.: Wringing out new Bell inequalities for three-dimensional systems (qutrits). Mod. Phys. Lett. A 17, 2231 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. Źukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564 (1997)

    Article  ADS  Google Scholar 

  32. Kurochkin, Y., Prasad, A.S., Lvovsky, A.I.: Distillation of the two-mode squeezed state. Phys. Rev. Lett. 112, 070402 (2014)

    Article  ADS  Google Scholar 

  33. Tombesi, P., Mecozzi, A.: Generation of macroscopically distinguishable quantum states and detection by the squeezed-vacuum technique. J. Opt. Soc. Am. B 4, 1700 (1987)

    Article  ADS  Google Scholar 

  34. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)

    Article  ADS  Google Scholar 

  35. Lee, S.-Y., Park, J., Lee, H.-W., Nha, H.: Generating arbitrary photon-number entangled states for continuous-variable quantum informatics. Opt. Express 20, 14221 (2012)

    Article  ADS  Google Scholar 

  36. Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006)

    Article  ADS  Google Scholar 

  37. Werner, R.F., Wolf, M.M.: Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  38. Hioe, F.T., Eberly, J.H.: \(N\)-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  39. van Enk, S.: Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. Phys. Rev. Lett. 91, 017902 (2003)

    Article  ADS  Google Scholar 

  40. Cheong, Y.W., Lee, J.: Generation of entangled coherent states. J. Korean Phys. Soc. 51, 1513 (2007)

    Article  ADS  Google Scholar 

  41. Kim, J., Lee, J., Ji, S.-W., Nha, H., Anisimov, P.M., Dowling, J.P.: Coherent-state optical qudit cluster state generation and teleportation via homodyne detection. Opt. Commun. 337, 79 (2015)

    Article  ADS  Google Scholar 

  42. Wang, C., et al.: A Schrödinger cat living in two boxes. Science 352, 1087 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Xu, Y., et al.: Geometrically manipulating photonic Schrödinger cat states and realizing cavity phase gates. arXiv:1810.04690

  44. Hirota, O., Sasaki, M.: Entangled state based on nonorthogonal state. In: Quantum Communication, Measurement, and Computing, vol. 3, pp. 359–366. Springer, New York (2001)

  45. Lupo, C., Mancini, S., de Pasquale, A., Facchi, P., Florio, G., Pascazio, S.: Invariant measures on multimode quantum Gaussian states. J. Math. Phys. 53, 122209 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  46. Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A01007264) and the Ministry of Science and ICT (NRF-2016R1A2B4014928). J.K. appreciates the financial support by the KIST Institutional Program (Project No. 2E26680-16-P025). K.J. acknowledges financial support by the National Research Foundation of Korea (NRF) through a grant funded by the Ministry of Science and ICT (NRF-2017R1E1A1A03070510 and NRF-2017R1A5A1015626) and the Ministry of Education (NRF-2018R1D1A1B07047512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabgyun Jeong.

Appendix A: Correspondence framework: DV versus CV systems

Appendix A: Correspondence framework: DV versus CV systems

Since a CV quantum state has the infinite degrees of freedom in general, it is not an overestimation that a generic CV quantum state possesses potentially higher resources than a DV state for performing a quantum information processing. In this sense, a DV state with arbitrary dimension can be possibly embedded on a CV state. Specifically, one of the methods is, in advance, finding a mapping between DV states with different dimensions, and taking the limit as the dimension goes to infinity for one of them. For example, we have generators for SU(n) algebra from the transition operators for an n-dimensional quantum state [38]. Then, we consider another N-dimensional quantum state with \(N\ge n\) and assume that N can be divided by n for simplicity. By using an appropriate coarse-graining method, we have N / n of SU(n) algebras and sum those up to finally getting the generators of SU(n) algebra fully spanned in the N-dimensional space [14]. Now a problem, however, arises when we take the limit \(N \rightarrow \infty \) for getting an indeed CV state. In this limit, roughly speaking, a non-MES can be mapped onto the MES of finite dimensions. In other words, there can be several ways of mapping a quantum state in finite dimensions to the CV state.

It is worth noting that there is another correspondence between CV and DV states, especially MES, under the nonlinear quantum optical settings [39,40,41]. In fact, a coherent state can be written as a superposition of pseudo-number states, which are d-modulo photon number states, so can be given by \(\left| \right. \alpha \left. \right\rangle ={1 \over \sqrt{d}} \sum _{k=0}^{d-1}\left| \right. k_d\left. \right\rangle \), where \(\left| \right. k_d\left. \right\rangle \) is a state having ‘\(k \mod d\)’ number of photons [41]. After a cross-Kerr interaction represented by \(e^{{{2\pi i}\over {d}}\hat{n}_1\hat{n}_2}\) on the two-mode initial state \(\left| \right. \alpha \left. \right\rangle _1\left| \right. \alpha \left. \right\rangle _2\), an MES can be produced, if \(|\alpha | \gg d/2\pi \) holds, as follows:

$$\begin{aligned} \left| \right. \alpha \left. \right\rangle _1\otimes \left| \right. \alpha \left. \right\rangle _2\overset{\underset{{\text {Cross-Kerr}}}{}}{\longmapsto }{1\over \sqrt{d}}\sum _{k=0}^{d-1}\left| \right. k_d\left. \right\rangle _1\otimes |\tilde{k}_d\rangle _2, \end{aligned}$$
(14)

where \(|\tilde{k}_d\rangle \) is a pseudo-phase state which is equivalent to a \({2\pi k}\over {d}\)-phase-shifted coherent state \(|e^{{2\pi k i}\over {d}} \alpha \rangle \). The simplest example is, when \(d=2\), the entangled coherent state \(\left| \right. \text {ECS}^{\pm }\left. \right\rangle =\left| \right. \alpha \left. \right\rangle \left| \right. \alpha \left. \right\rangle \pm \left| \right. -\alpha \left. \right\rangle \left| \right. -\alpha \left. \right\rangle \) [42, 43]. Since \(|\left<{\alpha }|{-\alpha }\right>|=0\) when \(\alpha \) is large, we obtain approximately a \(2 \times 2\)-MES. In fact, these are not the usual Bell states even \(\alpha \) is large enough, because when \(d=2\), we can calculate entanglement entropy using an orthogonal basis \(\left| \right. \pm \left. \right\rangle =\left| \right. \alpha \left. \right\rangle \pm \left| \right. -\alpha \left. \right\rangle \). The result is that the entanglement entropy has dependence on \(\alpha \) for \(\left| \right. \text {ECS}^+\left. \right\rangle \), but no dependence on \(\alpha \) in case of \(\left| \right. \text {ECS}^-\left. \right\rangle \). So we call these quasi-Bell states [44]. This can be extended to any \(d \times d\)-MES, but the above scheme is valid only when \(|\alpha |\) is much larger than \(d/2\pi \) so thus coherent states with large amplitude are needed as d increases.

From the previous instances, we figure out the fact that there has not yet been any faithful or unambiguous correspondence between CV and DV quantum states. Now we move our focus onto the Gaussian states. A Gaussian state is defined by a quantum state having a Gaussian distribution of the Wigner function or characteristic function. Because we can always displace the average of a Gaussian distribution by a local operation, the only valuable information of the Gaussian states is lying on the second moments of canonical variables, which are encoded in the covariance matrix, positive and real symmetric \(2n\times 2n\) matrix for an n-mode Gaussian state. For the dynamics, we consider the group of n-mode Gaussian unitaries, which is a projective representation of the inhomogeneous symplectic group ISp(2n,\(\mathbb {R}\) [45]. Consequently, in the Gaussian quantum system, even though governing Hilbert space is still infinite dimensional, it is enough to handle matrices with finite degrees of freedom.

However, there still exists a subtle problem of dimension-mode matching, despite concerning finite number of parameters. For the easiest example, let us consider a DV quantum state of dimension 2 (i.e., a qubit) and a single-mode Gaussian state. In this case, the number of free parameters for both cases is 3 under the consideration of the normalization. Next, non-trivial example is a quantum state of dimension 4 (a two-qubit state) and a two-mode Gaussian state. Here, the number of free parameters of the two-qubit state is 15, but that of the two-mode Gaussian state is only 10 [46]. Accordingly, we cannot make a simple correspondence between a d-dimensional DV state and an n-mode Gaussian state in general although there have been many analogies between the n-qubit system and the n-mode Gaussian state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y., Kim, J., Lee, S. et al. Maximally entangled states in discrete and Gaussian regimes. Quantum Inf Process 18, 43 (2019). https://doi.org/10.1007/s11128-018-2160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2160-y

Keywords

Navigation