Skip to main content
Log in

Quantum MDS codes from BCH constacyclic codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

One central theme in quantum error correction is to construct quantum codes that have large minimum distances. It has been a great challenge to construct new quantum maximum-distance-separable (MDS) codes. Recently, some quantum MDS codes have been constructed from constacyclic codes. Under these constructions, one of the most important problems is to ensure these constacyclic codes are Hermitian dual-containing. This paper presents a method for determining the maximal designed distance of \([[n, k, d]]_q\) quantum MDS codes from constacyclic codes with fixed n and q. From the method, we can get not only those known quantum MDS codes from constacyclic codes but also a new class of quantum MDS code from Hermitian dual-containing MDS constacyclic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  2. Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Trans. Inf. Theory 45(7), 2495–2498 (1999)

    Article  MathSciNet  Google Scholar 

  3. Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18, 1217–1231 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)

    Article  MathSciNet  Google Scholar 

  6. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  7. Feng, K.: Quantum codes \([[6, 2, 3]]_p\) and \([[7, 3, 3]]_p\) (\(p\ge 3\)) exist. IEEE Trans. Inf. Theory 48(8), 2384–2391 (2002)

    Article  Google Scholar 

  8. Feng, K., Ling, S., Xing, C.: Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 52(3), 986–991 (2006)

    Article  MathSciNet  Google Scholar 

  9. He, X., Xu, L., Chen, H.: New \(q\)-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15(7), 2745–2758 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

    Article  MathSciNet  Google Scholar 

  11. Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012)

    Article  MathSciNet  Google Scholar 

  12. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2921–2925 (2014)

    Article  MathSciNet  Google Scholar 

  13. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  14. Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)

    Article  MathSciNet  Google Scholar 

  15. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    Article  MathSciNet  Google Scholar 

  17. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ling, S., Luo, L., Xing, C.: Generalization of Steanes enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory 56(8), 4080–4084 (2010)

    Article  MathSciNet  Google Scholar 

  20. Li, S., Xiong, M., Ge, G.: Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inf. Theory 62(4), 1703–1710 (2016)

    Article  MathSciNet  Google Scholar 

  21. Mi, J., Cao, X., Xu, S., Luo, G.: Quantum codes from Hermitian dual-containing cyclic codes. Int. J. Comput. Math. Comput. Syst. Theory 2(3), 97–109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Shi, X., Yue, Q., Zhu, X.: Construction of some new quantum MDS codes. Finite Fields Appl. 46, 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Cai, W.: On self-dual constacyclic codes over finite fields. Des. Codes Cryptogr. 74(2), 355–364 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhang, G., Chen, B., Li, L.: A construction of MDS quantum convolutional codes. Int. J. Theor. Phys. 54, 3182C3194 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Hu.

Additional information

The paper is partly supported by NNSF of China (Nos. 61602144, 61772015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Yue, Q. & He, X. Quantum MDS codes from BCH constacyclic codes . Quantum Inf Process 17, 323 (2018). https://doi.org/10.1007/s11128-018-2049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2049-9

Keywords

Navigation