Skip to main content
Log in

Entanglement production by the magnetic dipolar interaction dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider two qubits prepared in a product state and evolved under the magnetic dipolar interaction (MDI). We describe the dependence of the entanglement generated by the MDI with time, with the interaction parameters, and with the system’s initial state, identifying the symmetry and coherence aspects of those initial configurations that yield the maximal entanglement. We also show how one can obtain maximum entanglement from the MDI applied to some families of partially entangled initial states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The Gibbs thermal state has the form: \(\rho _{th}=Z^{-1}e^{-\beta H}\), where \(Z=\mathrm {Tr}(e^{-\beta H})\) is the partition function and \(\beta =(k_\mathrm{B}T)^{-1}\), with T being the bath temperature and \(k_\mathrm{B}\) being the Boltzmann constant.

References

  1. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754 (2006)

    Article  Google Scholar 

  2. Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., Wrachtrup, J.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249 (2010)

    Article  Google Scholar 

  3. Dolde, F., Jakobi, I., Naydenov, B., Zhao, N., Pezzagna, S., Trautmann, C., Meijer, J., Neumann, P., Jelezko, F., Wrachtrup, J.: Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9, 139 (2013)

    Article  Google Scholar 

  4. Choi, J., Zhou, H., Choi, S., Landig, R., Ho, W.W., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Abanin, D.A., Lukin, M.D.: Probing quantum thermalization of a disordered dipolar spin ensemble with discrete time-crystalline order. arXiv:1806.10169 (2018)

  5. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state. Quantum Inf. Process. 11, 1603 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kuznetsova, E.I., Yurischev, M.A.: Quantum discord in spin systems with dipole–dipole interaction. Quantum Inf. Process. 12, 3587 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Furman, G.B., Goren, S.D., Meerovich, V.M., Sokolovsky, V.L.: Quantum correlations at negative absolute temperatures. Quantum Inf. Process. 13, 2759 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Castro, C.S., Duarte, O.S., Pires, D.P., Soares-Pinto, D.O., Reis, M.S.: Thermal entanglement and teleportation in a dipolar interacting system. Phys. Lett. A 380, 1571 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Multiple quantum NMR and entanglement dynamics in dipolar coupling spin systems. Phys. Rev. A 78, 042301 (2008)

    Article  ADS  Google Scholar 

  10. Hu, Z.-D., Wang, J., Zhang, Y., Zhang, Y.-Q.: Sudden transitions of trace distance discord of dipole–dipole coupled two qubits. Int. J. Mod. Phys. B 29, 1550138 (2015)

    Article  ADS  Google Scholar 

  11. Khan, S., Jan, M.: The effect of dipole–dipole interaction on tripartite entanglement in different cavities. Int. J. Theor. Phys. 55, 1515 (2016)

    Article  Google Scholar 

  12. Mohamed, A.-B.A.: Geometric measure of nonlocality and quantum discord of two charge qubits with phase decoherence and dipole–dipole interaction. Rep. Math. Phys. 72, 121 (2013)

    Article  ADS  Google Scholar 

  13. Namitha, C.V., Satyanarayana, S.V.M.: Role of initial coherence on entanglement dynamics of two qubit X states. J. Phys. B At. Mol. Opt. Phys. 51, 045506 (2018)

    Article  ADS  Google Scholar 

  14. Zhou, Y.-L., Ou, B.-Q., Wu, W.: Quantum simulating the frustrated Heisenberg model in a molecular dipolar crystal. Phys. Lett. A 379, 2569 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yun, S.J., Kim, J., Nam, C.H.: Ising interaction between two qubits composed of the highest magnetic quantum number states through magnetic dipole–dipole interaction. J. Phys. B At. Mol. Opt. Phys. 48, 075501 (2015)

    Article  ADS  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Maziero, J., Werlang, T., Fanchini, F.F., Céleri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  18. Pozzobom, M.B., Maziero, J.: Environment-induced quantum coherence spreading of a qubit. Ann. Phys. 377, 243 (2017)

    Article  ADS  Google Scholar 

  19. Klauder, J.R., Anderson, P.W.: Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912 (1962)

    Article  ADS  Google Scholar 

  20. Soares-Pinto, D.O., Moussa, M.H.Y., Maziero, J., de Azevedo, E.R., Bonagamba, T.J., Serra, R.M., Céleri, L.C.: Equivalence between redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83, 062336 (2011)

    Article  ADS  Google Scholar 

  21. Shiddiq, M., Komijani, D., Duan, Y., Gaita-Arino, A., Coronado, E., Hill, S.: Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348 (2016)

    Article  ADS  Google Scholar 

  22. Ota, T., Yusa, G., Kumada, N., Miyashita, S., Fujisawa, T., Hirayama, Y.: Decoherence of nuclear spins due to dipole–dipole interactions probed by resistively detected nuclear magnetic resonance. Appl. Phys. Lett. 91, 193101 (2007)

    Article  ADS  Google Scholar 

  23. Stamp, P.C.E.: Environmental decoherence versus intrinsic decoherence. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 4429 (2012)

    Article  ADS  Google Scholar 

  24. Witzel, W.M., Carroll, M.S., Cywi’nski, L., Sarma, S.D.: Quantum decoherence of the central spin in a sparse system of dipolar coupled spins. Phys. Rev. B 86, 035452 (2012)

    Article  ADS  Google Scholar 

  25. Annabestani, R., Cory, D.G.: Dipolar relaxation mechanism of long-lived states of methyl groups. Quantum Inf. Process. 17, 15 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Oliveira, I.S., Bonagamba, T.J., Sarthour, R.S., Freitas, J.C.C., deAzevedo, E.R.: NMR Quantum Information Processing. Elsevier, Oxford (2007)

    MATH  Google Scholar 

  29. Horodecki, R., Horodecki, P.: Perfect correlations in the Einstein–Podolski–Rosen experiment and Bell’s inequalities. Phys. Lett. A 210, 227 (1996a)

    Article  ADS  MathSciNet  Google Scholar 

  30. Horodecki, R., Horodecki, M.: Information-theoretic aspects of quantum inseparability of mixed states. Phys. Rev. A 54, 1838 (1996b)

    Article  ADS  MathSciNet  Google Scholar 

  31. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  32. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  33. Bennett, C.H., Brassard, G., Cr’epeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  34. Popescu, S.: Bells inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  35. Cavalcanti, D., Skrzypczyk, P., Supić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)

    Article  ADS  Google Scholar 

  36. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641 (2015)

    Article  ADS  Google Scholar 

  37. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  38. Maziero, J.: Computing partial traces and reduced density matrices. Int. J. Mod. Phys. C 28, 1750005 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian National Institute for the Science and Technology of Quantum Information (INCT-IQ), process 465469/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Maziero.

Appendix: Dynamics of local quantum coherence for initial product-pure states

Appendix: Dynamics of local quantum coherence for initial product-pure states

Here, we use the \(l_{1}\)-norm coherence [31], \(C(\rho )=\sum _{j\ne k}|\langle j|\rho |k\rangle |\), to quantify quantum coherence. By taking the partial trace [38] over one of the two dipoles, whose composite state is (8), we obtain the reduced density operator \(\rho _{r}=\mathrm {Tr}_{p}(|\Psi _{t}\rangle \langle \Psi _{t}|)\). The quantum coherence of this state reads

$$\begin{aligned} 2^{-2}C^{2}(\rho _{r})= & {} \alpha _{a}^{2}\beta _{a}^{2}(\alpha _{b}^{4}+\beta _{b}^{4})\cos ^{2}t+\alpha _{b}^{2}\beta _{b}^{2}(\alpha _{a}^{4}+\beta _{a}^{4})\sin ^{2}t+2\alpha _{a}^{2}\beta _{a}^{2}\alpha _{b}^{2}\beta _{b}^{2}\cos 2t\cos 4t\nonumber \nonumber \\&\quad -\,\alpha _{a}\beta _{a}\alpha _{b}\beta _{b}(\alpha _{a}^{2}\beta _{b}^{2}+\beta _{a}^{2}\alpha _{b}^{2})\sin 2t\sin 4t. \end{aligned}$$
(A.1)

In Fig. 4, we plot this quantity as a function of time and of the dipole a initial state for some initial states of dipole b. Comparison with Fig. 1 confirms the non-existence of a general temporal correlation between the values of coherence and entanglement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, D.F., Maziero, J. Entanglement production by the magnetic dipolar interaction dynamics. Quantum Inf Process 17, 253 (2018). https://doi.org/10.1007/s11128-018-2028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2028-1

Keywords

Navigation