Skip to main content

Advertisement

Log in

Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Explicit controlled-NOT gate sequences between two qubits of different types are presented in view of applications for large-scale quantum computation. Here, the building blocks for such composite systems are qubits based on the electrostatically confined electronic spin in semiconductor quantum dots. For each system the effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in two different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and charge noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Medford, J., Beil, J., Taylor, J.M., Bartlett, S.D., Doherty, A.C., Rashba, E.I., DiVincenzo, D.P., Lu, H., Gossard, A.C., Marcus, C.M.: Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol. 8, 654 (2013)

    Article  ADS  Google Scholar 

  2. Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., Vandersypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature (London) 442, 766 (2006)

    Article  ADS  Google Scholar 

  3. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  4. Veldhorst, M., Hwang, J.C.C., Yang, C.H., Leenstra, A.W., de Ronde, B., Dehollain, J.P., Muhonen, J.T., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981 (2014)

    Article  ADS  Google Scholar 

  5. Kawakami, E., Scarlino, P., Ward, D.R., Braakman, F.R., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Vandersypen, L.M.K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666 (2014)

    Article  ADS  Google Scholar 

  6. Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schmitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344 (2012)

    Article  ADS  Google Scholar 

  7. Morton, J.J.L., McCamey, D.R., Eriksson, M.A., Lyon, S.A.: Embracing the quantum limit in silicon computing. Nature 479, 345 (2011)

    Article  ADS  Google Scholar 

  8. Levy, J.: Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Shi, Z., Simmons, C.B., Prance, J.R., Gamble, J.K., Koh, T.S., Shim, Y.P., Hu, X., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012)

    Article  ADS  Google Scholar 

  10. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  11. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature (London) 408, 339 (2000)

    Article  ADS  Google Scholar 

  12. Mehl, S., Bluhm, H., DiVincenzo, D.P.: Two-qubit couplings of singlet-triplet qubits mediated by one quantum state. Phys. Rev. B 90, 045404 (2014)

    Article  ADS  Google Scholar 

  13. Doherty, A.C., Wardrop, M.P.: Two-qubit gates for resonant exchange qubits. Phys. Rev. Lett. 111, 050503 (2013)

    Article  ADS  Google Scholar 

  14. Veldhorst, M., Yang, C.H., Hwang, J.C.C., Huang, W., Dehollain, J.P., Muhonen, J.T., Simmons, S., Laucht, A., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S., Two, A.: Qubit logic gate in silicon. Nature (London) 526, 410 (2015)

    Article  ADS  Google Scholar 

  15. Mehl, S., DiVincenzo, D.P.: Simple operation sequences to couple and interchange quantum information between spin qubits of different kinds. Phys. Rev. B 92, 115448 (2015)

    Article  ADS  Google Scholar 

  16. Nakajima, T., Delbecq, M.R., Otsuka, T., Amaha, S., Yoneda, J., Noiri, A., Takeda, K., Allison, G., Ludwig, A., Wieck, A.D., Tarucha, S.: Phase control of local and non-local entanglement in a triple spin qubit. arXiv:1604.02232 (2016)

  17. Koh, T.S., Gamble, J.K., Friesen, M., Eriksson, M.A., Coppersmith, S.N.: Pulse-gated quantum-dot hybrid qubit. Phys. Rev. Lett. 109, 250503 (2012)

    Article  ADS  Google Scholar 

  18. Kim, D., Shi, Z., Simmons, C.B., Ward, D.R., Prance, J.R., Koh, T.S., Gamble, J.K., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70 (2014)

    Article  ADS  Google Scholar 

  19. Kim, D., Ward, D.R., Simmons, C.B., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. Npj Quantum Inf. 1, 15004 (2015)

    Article  ADS  Google Scholar 

  20. Wu, X., Ward, D.R., Prance, J.R., Kim, D., Gamble, J.K., Mohr, R.T., Shi, Z., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Two-axis control of a singlettriplet qubit with an integrated micromagnet. PNAS 111, 11938–11942 (2014)

    Article  ADS  Google Scholar 

  21. Barnes, E., Rudner, M.S., Martins, F., Malinowski, F.K., Marcus, C.M., Kuemmeth, F.: Filter function formalism beyond pure dephasing and non-Markovian noise in singlet-triplet qubits. Phys. Rev. B 93, 121407(R) (2016)

    Article  ADS  Google Scholar 

  22. Pioro-Ladrière, M., Obata, T., Tokura, Y., Shin, Y.S., Kubo, T., Yoshida, K., Taniyama, T., Tarucha, S.: Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776 (2008)

    Article  Google Scholar 

  23. Gonzalez-Zalba, M., Barraud, S., Ferguson, A., Betz, A.: Probing the limits of gate-based charge sensing. Nat. Commun. 6, 6084 (2014)

    Article  Google Scholar 

  24. Ferraro, E., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: Effective Hamiltonian for the hybrid double quantum dot qubit. Quantum Inf. Process. 13, 1155 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Ferraro, E., De Michielis, M., Fanciulli, M., Prati, E.: Effective Hamiltonian for two interacting double-dot exchange-only qubits and their controlled-NOT operations. Quantum Inf. Process. 14, 47 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling. J. Phys. A Math. Theor. 48, 065304 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Ferraro, E., De Michielis, M., Fanciulli, M., Prati, E.: Coherent tunneling by adiabatic passage of an exchange-only spin qubit in a double quantum dot chain. Phys. Rev. B 91, 075435 (2015)

    Article  ADS  MATH  Google Scholar 

  28. Rotta, D., De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture. Quantum Inf. Process. Top. Collection 15, 2253 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Fong, B.H., Wandzura, S.M.: Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem. Quantum Inf. Comput. 11, 1003 (2011)

    MATH  MathSciNet  Google Scholar 

  30. Yuan, H., Khaneja, N.: Time optimal control of coupled qubits under nonstationary interactions. Phys. Rev. A 72, 040301 (2005)

    Article  ADS  Google Scholar 

  31. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control of coupled qubits under nonstationary interactions. Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  32. Yoneda, J., Otsuka, T., Nakajima, T., Takakura, T., Obata, T., Pioro-Ladrire, M., Lu, H., Palmstrm, C.J., Gossard, A.C., Tarucha, S.: Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014)

    Article  ADS  Google Scholar 

  33. Neumann, R., Schreiber, L.R.: Simulation of micro-magnet stray-field dynamics for spin qubit manipulation. J. Appl. Phys. 117, 193903 (2015)

    Article  ADS  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Marinescu, D.C., Marinescu, G.M.: Classical and Quantum Information. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  36. Mehl, S.: Two-qubit pulse gate for the three-electron double quantum dot qubit. Phys. Rev. B 91, 035430 (2015)

    Article  ADS  Google Scholar 

  37. Taylor, J.M., Petta, J.R., Johnson, A.C., Yacoby, A., Marcus, C.M., Lukin, M.D.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007)

    Article  ADS  Google Scholar 

  38. Assali, L.V.C., Petrilli, H.M., Capaz, R.B., Koiller, B., Hu, X., Das Sarma, S.: Hyperfine interactions in silicon quantum dots. Phys. Rev. B 83, 165301 (2011)

    Article  ADS  Google Scholar 

  39. Testolin, M.J., Cole, J.H., Hollenberg, L.C.L.: Modeling two-spin dynamics in a noisy environment. Phys. Rev. A 80, 042326 (2009)

    Article  ADS  Google Scholar 

  40. Möttönen, M., de Sousa, R., Zhang, J., Whaley, K.B.: High-fidelity one-qubit operations under random telegraph noise. Phys. Rev. A 73, 022332 (2006)

    Article  ADS  Google Scholar 

  41. Arbitrary Waveform Generators: AWG70000A Series Datasheet. http://www.tek.com/datasheet/awg70000a-arbitrary-waveform-generator-datasheet

  42. Schrieffer, J.R., Wolff, P.A.: Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 688539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ferraro.

Appendices

Appendix A: Effective exchange coupling constants

In this Appendix, following the same procedure already exploited in Refs. [24, 25], all the detailed expressions for the exchange coupling constants between pair of electrons in both the mixed architectures considered are reported. The Schrieffer–Wolff effective Hamiltonian models (5) and (11) are derived by combining a Hubbard-like model with a projector operator method [42]. As a result, the Hubbard-like Hamiltonian is transformed into an equivalent expression in terms of the exchange coupling interactions between pairs of electrons. Since the two dots composing the hybrid qubit are asymmetric, it follows that there are two different possible configurations for each architecture as shown in Figs. 1 and 4.

1.1 Quantum dot single-spin qubit and double quantum dot hybrid qubit

The expressions for the exchange coupling constants for the configuration A appearing in the effective Hamiltonian (5) are given by

$$\begin{aligned} J_{1_R2_R}&=\frac{1}{\Delta E_1}4\left( t_{1_R2_R}-J^{(1_R2_R)}_t\right) ^2 -2J^{(1_R2_R)}_e\nonumber \\ J_{2_R3_R}&=\frac{1}{\Delta E_2}4\left( t_{2_R3_R}-J^{(2_R3_R)}_t\right) ^2 -2J^{(2_R3_R)}_e\nonumber \\ J_{1_R3_R}&=\left( \frac{1}{\Delta E_3}+\frac{1}{\Delta E_4}\right) 4J^{(1_R3_R)2}_t-2J^{(1_R3_R)}_e\\ J_{1_L1_R}&=\frac{1}{\Delta E_5}4\left( t_{1_L1_R}-J^{(1_L1_R)}_t\right) ^2 -2J^{(1_L1_R)}_e\nonumber \\ J_{1_L3_R}&=\frac{1}{\Delta E_6}4\left( t_{1_L3_R}-J^{(1_L3_R)}_t\right) ^2 -2J^{(1_L3_R)}_e,\nonumber \end{aligned}$$
(18)

with the energy differences defined as

$$\begin{aligned} \Delta E_1&=E_{(1,012)}-E_{(1,111)}\nonumber \\ \Delta E_2&=E_{(1,102)}-E_{(1,111)}\nonumber \\ \Delta E_3&=E_{(1,201)}-E_{(1,111)}\nonumber \\ \Delta E_4&=E_{(1,021)}-E_{(1,111)}\nonumber \\ \Delta E_5&=E_{(0,211)}-E_{(1,111)}\nonumber \\ \Delta E_6&=E_{(0,121)}-E_{(1,111)} \end{aligned}$$
(19)

where

$$\begin{aligned} E_{(w,ijk)}&=w\varepsilon _{1_L}+i\varepsilon _{1_R}+j\varepsilon _{3_R} +k\varepsilon _{2_R}+ijU_{1_R3_R}+ikU_{1_R2_R}+kjU_{2_R3_R}+\delta _{i2}U_{1_R}\nonumber \\ {}&\quad +\delta _{j2}U_{3_R}+\delta _{k2}U_{2_R}+iwU_{1_L1_R}+jwU_{1_L3_R}. \end{aligned}$$
(20)

The first index in parenthesis \(w=0,1\) denotes the electron occupation for the single-spin qubit L, while the indices \(i,j,k=0,1,2\) denote the number of electrons in each level for the hybrid qubit R ordered as depicted in Fig. 1. The parameters involved are: the energy levels \(\varepsilon _i\), the tunneling coefficients between different dots \(t_{ij}\), the spin exchange \(J_e^{ij}\) and the occupation-modulation hopping terms \(J_t^{ij}\).

Analogously the exchange coupling constants for the configuration B are defined as in Eq. (18) with the new inter-qubit interaction

$$\begin{aligned} J_{1_L2_R}=\frac{1}{\Delta E_5}4\left( t_{1_L2_R}-J^{(1_L2_R)}_t\right) ^2-2J^{(1_L2_R)}_e \end{aligned}$$
(21)

where \(\Delta E_5=E_{(0,112)}-E_{(1,111)}\). The energies corresponding to each configurations are given for the configuration B by

$$\begin{aligned} E_{(w,ijk)}&=w\varepsilon _{1_L}+i\varepsilon _{1_R} +j\varepsilon _{3_R}+k\varepsilon _{2_R}+ijU_{1_R3_R}+ikU_{1_R2_R}+kjU_{2_R3_R}+\delta _{i2}U_{1_R}\nonumber \\ {}&\quad +\delta _{j2}U_{3_R} +\delta _{k2}U_{2_R}+kwU_{1_L2_R}. \end{aligned}$$
(22)

1.2 Double quantum dot singlet–triplet qubit and double quantum dot hybrid qubit

The exchange coupling constants for the double QD singlet–triplet and the double QD hybrid qubits in configuration A appearing in the effective Hamiltonian (11) are given by

$$\begin{aligned} J_{1_R2_R}&=\frac{1}{\Delta E_{1_R}}4\left( t_{1_R2_R} -J^{(1_R2_R)}_t\right) ^2-2J^{(1_R2_R)}_e\nonumber \\ J_{2_R3_R}&=\frac{1}{\Delta E_{2_R}}4\left( t_{2_R3_R} -J^{(2_R3_R)}_t\right) ^2-2J^{(2_R3_R)}_e\nonumber \\ J_{1_R3_R}&=\left( \frac{1}{\Delta E_{3_R}}+\frac{1}{\Delta E_{4_R}}\right) 4J^{(1_R3_R)2}_t-2J^{(1_R3_R)}_e\nonumber \\ J_{1_L2_L}&=\left( \frac{1}{\Delta E_{3_L}}+\frac{1}{\Delta E_{4_L}}\right) 4\left( t_{1_L2_L}-J^{(1_L2_L)}_t\right) ^2-2J^{(1_L2_L)}_e\nonumber \\ J_{2_L1_R}&=\frac{1}{\Delta E_5}4\left( t_{2_L1_R}-J^{(2_L1_R)}_t\right) ^2 -2J^{(2_L1_R)}_e\nonumber \\ J_{2_L3_R}&=\frac{1}{\Delta E_6}4\left( t_{2_L3_R}-J^{(2_L3_R)}_t\right) ^2 -2J^{(2_L3_R)}_e, \end{aligned}$$
(23)

where

$$\begin{aligned} \Delta E_{1_R}&=E_{(11,012)}-E_{(11,111)}\nonumber \\ \Delta E_{2_R}&=E_{(11,102)}-E_{(11,111)}\nonumber \\ \Delta E_{3_R}&=E_{(11,201)}-E_{(11,111)}\nonumber \\ \Delta E_{4_R}&=E_{(11,021)}-E_{(11,111)}\nonumber \\ \Delta E_{3_L}&=E_{(02,111)}-E_{(11,111)}\nonumber \\ \Delta E_{4_L}&=E_{(20,111)}-E_{(11,111)}\nonumber \\ \Delta E_5&=E_{(10,211)}-E_{(11,111)}\nonumber \\ \Delta E_6&=E_{(10,121)}-E_{(11,111)} \end{aligned}$$
(24)

with

$$\begin{aligned} E_{(wz,ijk)}&=w\varepsilon _{1_L}+z\varepsilon _{2_L}+wzU_{1_L2_L} +\delta _{w2}U_{1_L}+\delta _{z2}U_{2_L}+i\varepsilon _{1_R}+j\varepsilon _{3_R}+k\varepsilon _{2_R} \nonumber \\ {}&\quad +ijU_{1_R3_R}+ikU_{1_R2_R}+kjU_{2_R3_R}+\delta _{i2}U_{1_R}+\delta _{j2}U_{3_R} +\delta _{k2}U_{2_R}\nonumber \\ {}&\quad +izU_{2_L1_R}+jzU_{2_L3_R}. \end{aligned}$$
(25)

The first (last) indices inside parenthesis, assuming only integer values between 0 and 2, denote the number of electrons in each level for qubit L(R) ordered as depicted in Fig. 4.

Fig. 10
figure 10

Graphical representation of modulus and phase of the final transformation matrix for the CNOT gates. Top left (right): \(\text {single}+\text {hybrid}\) A (B); Bottom left (right): \(\text {singlet--triplet}+\text {hybrid}\) A (B)

For the configuration B the coupling constants are defined as in Eq. (23) with the new inter-qubit interaction

$$\begin{aligned} J_{2_L2_R}=\frac{1}{\Delta E_5}4\left( t_{2_L2_R}-J^{(2_L2_R)}_t\right) ^2-2J^{(2_L2_R)}_e \end{aligned}$$
(26)

where \(\Delta E_5=E_{(10,121)}-E_{(11,111)}\). The energies are now given by

$$\begin{aligned} E_{(wz,ijk)}&=w\varepsilon _{1_L}+z\varepsilon _{2_L}+wzU_{1_L2_L} +\delta _{w2}U_{1_L}+\delta _{z2}U_{2_L}+i\varepsilon _{1_R}+j\varepsilon _{3_R}+k\varepsilon _{2_R} \nonumber \\ {}&\quad +ijU_{1_R3_R}+ikU_{1_R2_R}+kjU_{2_R3_R}+\delta _{i2}U_{1_R}+\delta _{j2}U_{3_R} \nonumber \\ {}&\quad +\delta _{k2}U_{2_R}+kzU_{2_L2_R}. \end{aligned}$$
(27)

Appendix B: Graphical representation of CNOT gates

In this Appendix a graphical representation of modulus and phase (gray scale) of the final transformation matrix for the CNOT gates for the four mixed architectures studied is shown (Fig. 10). The resulting transformation matrices are obtained starting from the sequences reported in Figs. 2, 3, 5 and 6. The \(4\times 4\) block in the up left corner corresponds to the CNOT matrix reported in Eq. (9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, E., Fanciulli, M. & De Michielis, M. Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment. Quantum Inf Process 16, 277 (2017). https://doi.org/10.1007/s11128-017-1729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1729-1

Keywords

Navigation