Skip to main content
Log in

Cyclic quantum teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme of cyclic quantum teleportation for three unknown qubits using six-qubit maximally entangled state as the quantum channel. Suppose there are three observers Alice, Bob and Charlie, each of them has been given a quantum system such as a photon or spin-\(\frac{1}{2}\) particle, prepared in state unknown to them. We show how to implement the cyclic quantum teleportation where Alice can transfer her single-qubit state of qubit a to Bob, Bob can transfer his single-qubit state of qubit b to Charlie and Charlie can also transfer his single-qubit state of qubit c to Alice. We can also implement the cyclic quantum teleportation with \(N\geqslant 3\) observers by constructing a 2N-qubit maximally entangled state as the quantum channel. By changing the quantum channel, we can change the direction of teleportation. Therefore, our scheme can realize teleportation in quantum information networks with N observers in different directions, and the security of our scheme is also investigated at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit nonmaximally entangled states of generalized Bell-type. Int. J. Quantum Inf. 9, 389 (2011)

    Article  MATH  Google Scholar 

  5. Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)

    Article  ADS  Google Scholar 

  7. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  9. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: Teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  10. Bouwmeester, D., Pan, J.W., Mattle, K.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  11. Yang, Y.X., Metz, D.C.: Safety of proton pump inhibitor exposure. Gastroenterology 139(4), 1115–1127 (2010)

    Article  Google Scholar 

  12. Takeda, S., Mizuta, T., Fuwa, M., et al.: Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature 500(7462), 315–318 (2013)

    Article  ADS  Google Scholar 

  13. Krauter, H., Salart, D., Muschik, C.A., et al.: Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9(7), 400–404 (2013)

    Article  Google Scholar 

  14. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  15. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)

    Article  MathSciNet  Google Scholar 

  16. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790 (2013)

    Article  Google Scholar 

  17. Zha, X.W., Song, H.Y., Ma, G.L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. arXiv:1006.0052 [quant-ph] (2010)

  18. Chen, Y.: Bidirectional controlled teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 54, 1454–1458 (2014)

    Article  MATH  Google Scholar 

  19. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780 (2014)

    Article  MATH  Google Scholar 

  21. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269 (2014)

    Article  MATH  Google Scholar 

  22. An, Y.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697 (2014)

    Article  MATH  Google Scholar 

  24. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14, 4601–4614 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, M., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  29. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Riebe, M., Haffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  31. Barrett, M.D., Chiaverini, J., Schaetz, T., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  32. Wang, T.Y., Wen, Q.Y., Chen, X.B., et al.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)

    Article  ADS  Google Scholar 

  33. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. L. Shi, Y. T. Gou and J. X. Hou for their valuable discussions. This work was supported by the NSFC (Grant Nos. 11375141, 11425522, 91536108 and 11647057), the Special research funds of Shaanxi Province Department of Education (No. 203010005), Northwest university scientific research funds (No. 338020004) and The Double First-class University Construction Project of Northwest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YX., Du, J., Liu, SY. et al. Cyclic quantum teleportation. Quantum Inf Process 16, 201 (2017). https://doi.org/10.1007/s11128-017-1648-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1648-1

Keywords

Navigation