Skip to main content
Log in

New passive decoy-state quantum key distribution with thermal distributed parametric down-conversion source

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a new scheme on implementing the passive quantum key distribution with thermal distributed parametric down-conversion source. In this scheme, only one-intensity decoy state is employed, but we can achieve very precise estimation on the single-photon-pulse contribution by utilizing those built-in decoy states. Moreover, we compare the new scheme with other practical methods, i.e., the standard three-intensity decoy-state BB84 protocol using either weak coherent states or parametric down-conversion source. Through numerical simulations, we demonstrate that our new scheme can drastically improve both the secure transmission distance and the key generation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell\(^{^{\prime }}\)s theorem. Phys. Rev. Lett. 67, 611 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984)

  4. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A. 51, 1863 (1995)

    Article  ADS  Google Scholar 

  5. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  6. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  7. Wang, X.-B.: Beating the Photon-Number-Splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  8. Lo, H.K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  9. Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L., Pan, J.W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A. 77, 042311 (2008)

    Article  ADS  Google Scholar 

  10. Wang, X.-B., Yang, L., Peng, C.-Z., Pan, J.W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11, 075006 (2009)

    Article  ADS  Google Scholar 

  11. Wang, Q., Wang, X.-B., Guo, G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A. 75, 012312 (2007)

    Article  ADS  Google Scholar 

  12. Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.-F., Guo, G.-C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-Poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

    Article  ADS  Google Scholar 

  13. Wang, Q., Karlsson, A.: Performance enhancement of a decoy-state quantum key distribution using a conditionally prepared down-conversion source in the Poisson distribution. Phys. Rev. A. 76, 014309 (2007)

    Article  ADS  Google Scholar 

  14. Wang, Q., Wang, X.-B., Björk, G., Karlsson, A.: Improved practical decoy state method in quantum key distribution with parametric downconversion source. Europhys. Lett. 79, 40001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ma, X.-F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A. 72, 012326 (2005)

    Article  ADS  Google Scholar 

  16. Wang, X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A. 72, 012322 (2005)

    Article  ADS  Google Scholar 

  17. Adachi, Y., Yamamoto, Y., Masato, K., Imoto, N.: Simple and efficient quantum key distribution with parametric down-conversion. Phys. Rev. Lett. 99, 180503 (2007)

    Article  ADS  Google Scholar 

  18. Curty, M., Ma, X.-F., Qi, B., Moroder, T.: Passive decoy-state quantum key distribution with practical light sources. Phys. Rev. A. 81, 022310 (2010)

    Article  ADS  Google Scholar 

  19. Zambra, G., Andreoni, A., Bondani, M., Gramegna, M., Genovese, M., Brida, G., Rossi, A., Paris, M.G.: Experimental reconstruction of photon statistics without photon counting. Phys. Rev. Lett. 95, 063602 (2005)

    Article  ADS  Google Scholar 

  20. Chekhova, M., Kulik, S.: Physical Foundations of Quantum Electronics. World Scientific Publishing Company, Singapore (2011)

    Google Scholar 

  21. Brida, G., Degiovanni, I.-P., Genovese, M., Piacentini, F., Traina, P., Della Frera, A., Tosi, A., Bahgat Shehata, A., Scarcella, C., Gulinatti, A., Ghioni, M., Polyakov, S.-V., Migdall, A., Giudice, A.: An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies. Appl. Phys. Lett. 101, 221112 (2012)

    Article  ADS  Google Scholar 

  22. Ngah, L.A., Alibart, O., Labonté, L., D’Auria, V., Tanzilli, S.: Ultra-fast heralded single photon source based on telecom technology. Laser Photonics Rev. 9(2), L1 (2015)

    Article  Google Scholar 

  23. Yurke, B., Potasek, M.: Obtainment of thermal noise from a pure quantum state. Phys. Rev. A. 36, 3464 (1987)

    Article  ADS  Google Scholar 

  24. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A. 61, 052304 (2000)

    Article  ADS  Google Scholar 

  25. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A. 89, 052325 (2014)

    Article  ADS  Google Scholar 

  26. Zhang, C.-H., Luo, S.-L., Guo, G.-C., Wang, Q.: Approaching the ideal quantum key distribution with two-intensity decoy states. Phys. Rev. A. 92, 022332 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grants Nos. 11274178, 61475197, and 61590932, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039, and the Priority Academic Program Development of Jiangsu Higher Education Institutions through Grant No. YX002001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Zhang, CH. & Wang, Q. New passive decoy-state quantum key distribution with thermal distributed parametric down-conversion source. Quantum Inf Process 16, 50 (2017). https://doi.org/10.1007/s11128-016-1510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1510-x

Keywords

Navigation