Skip to main content
Log in

Chained Clauser–Horne–Shimony–Holt inequality for Hardy’s ladder test of nonlocality

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Relativistic causality forbids superluminal signaling between distant observers. By exploiting the non-signaling principle, we derive the exact relationship between the chained Clauser–Horne–Shimony–Holt sum of correlations \(\text {CHSH}_K\) and the success probability \(P_K\) associated with Hardy’s ladder test of nonlocality for two qubits and \(K+1\) observables per qubit. Then, by invoking the Tsirelson bound for \(\text {CHSH}_K\), the derived relationship allows us to establish an upper limit on \(P_K\). In addition, we draw the connection between \(\text {CHSH}_K\) and the chained version of the Clauser–Horne (CH) inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A few technical lemmas concerning a version of the \(\text {CHSH}_K\) expression (7) have been derived in a series of papers by Colbeck and Renner (see, for instance, Refs. [1214]). Interestingly, as shown by these authors, the use of a chained Bell inequality allows one to construct a program to rule out a broad class of hidden variable theories.

  2. In Sect. 3, it will be verified that, in fact, the quantum predictions satisfy relation (8).

  3. Incidentally, it is worth pointing out that, in this limit, a direct (“all or nothing”) contradiction between quantum mechanics and local realism emerges in Hardy’s ladder scenario [23].

  4. Note that, from relation (8), the limit \(P_K = 0.5\) can never be surpassed since this would entail that \(\text {CHSH}_K > 2K +2\), which is impossible by the very definition of \(\text {CHSH}_K\).

  5. The IC principle states that communication of m classical bits causes information gain of at most m bits. The NS principle is just IC for \(m=0\).

  6. As pointed out by one referee, robust self-testing conditions for any partially entangled two-qubit states have been derived by Bamps and Pironio [34] (see also Ref. [35] for closely related work and references therein).

References

  1. Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hardy, L.: A bigger contradiction between quantum theory and locality for two particles without inequalities. In: Ferrero, M., Van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics, pp. 163–170. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  4. Boschi, D., Branca, S., De Martini, F., Hardy, L.: Ladder proof of nonlocality without inequalities: theoretical and experimental results. Phys. Rev. Lett. 79, 2755–2758 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Mermin, N.D.: Quantum mysteries refined. Am. J. Phys. 62, 880–887 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Mermin, N.D.: The best version of Bell’s theorem. In: Greenberger D.M., Zeilinger A. (eds.) Fundamental Problems in Quantum Theory: A Conference Held in Honor of Professor John A. Wheeler, Ann. N. Y. Acad. Sci. vol. 755, pp. 616–623 (1995)

  7. Pearle, P.M.: Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970)

    Article  ADS  Google Scholar 

  8. Braunstein, S.L., Caves, C.M.: Wringing out better Bell inequalities. Ann. Phys. (N. Y.) 202, 22–56 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Wehner, S.: Tsirelson bounds for generalized Clauser–Horne–Shimony–Holt inequalities. Phys. Rev. A 73, 022110 (2006)

    Article  ADS  Google Scholar 

  10. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  11. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. Colbeck, R., Renner, R.: Hidden variable models for quantum theory cannot have any local part. Phys. Rev. Lett. 101, 050403 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Colbeck, R., Renner, R.: No extension of quantum theory can have improved predictive power. Nat. Commun. 2, 411 (2011)

    Article  ADS  Google Scholar 

  14. Colbeck, R., Renner, R.: The completeness of quantum theory for predicting measurement outcomes. arxiv:1208.4123

  15. Cereceda, J.L.: Quantum mechanical probabilities and general probabilistic constraints for Einstein–Podolsky–Rosen–Bohm experiments. Found. Phys. Lett. 13, 427–442 (2000)

    Article  MathSciNet  Google Scholar 

  16. Xiang, Y.: The relation between Hardy’s non-locality and violation of Bell inequality. Chin. Phys. B 20, 060301 (2011)

    Article  ADS  Google Scholar 

  17. Cereceda, J.L.: Identification of all Hardy-type correlations for two photons or particles with spin 1/2. Found. Phys. Lett. 14, 401–424 (2001)

    Article  MathSciNet  Google Scholar 

  18. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  19. Barbieri, M., Cinelli, C., De Martini, F., Mataloni, P.: Test of quantum nonlocality by full collection of polarization entangled photon pairs. Eur. Phys. J. D 32, 261–267 (2005)

    Article  ADS  Google Scholar 

  20. Vallone, G., Gianani, I., Inostroza, E.B., Saavedra, C., Lima, G., Cabello, A., Mataloni, P.: Testing Hardy’s nonlocality proof with genuine energy-time entanglement. Phys. Rev. A 83, 042105 (2011)

    Article  ADS  Google Scholar 

  21. Guo, W.J., Fan, D.H., Wei, L.F.: Experimentally testing Bell’s theorem based on Hardy’s nonlocal ladder proofs. Sci. China Phys. Mech. 58, 1–5 (2015)

    Google Scholar 

  22. Yuan, H., Wei, L.-F.: Testing Hardy’s ladder proof of nonlocality by joint measurements of qubits. Quantum Inf. Process. 12, 3341–3352 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Cereceda, J.L.: Ladder proof of nonlocality for two spin-half particles revisited. J. Phys. A Math. Gen. 35, 9105–9111 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Cereceda, J.L.: Causal communication constraint for two qubits in Hardy’s ladder proof of non-locality. Adv. Stud. Theor. Phys. 9, 433–448 (2015)

    Google Scholar 

  25. Jones, N.S., Masanes, L.: Interconversion of nonlocal correlations. Phys. Rev. A 72, 052312 (2005)

  26. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Fritz, T.: Quantum analogues of Hardy’s nonlocality paradox. Found. Phys. 41, 1493–1501 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Lima, G., Inostroza, E.B., Vianna, R.O., Larsson, J.A., Saavedra, C.: Optimal measurement bases for Bell tests based on the Clauser–Horne inequality. Phys. Rev. A 85, 012105 (2012)

    Article  ADS  Google Scholar 

  29. Ahanj, A., Kunkri, S., Rai, A., Rahaman, R., Joag, P.S.: Bound on Hardy’s nonlocality from the principle of information causality. Phys. Rev. A 81, 032103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Pawłowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Żukowski, M.: Information causality as a physical principle. Nature (London) 461, 1101–1104 (2009)

    Article  ADS  Google Scholar 

  31. Allcock, J., Brunner, N., Pawłowski, M., Scarani, V.: Recovering part of the boundary between quantum and nonquantum correlations from information causality. Phys. Rev. A 80, 040103(R) (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Rabelo, R., Zhi, L.Y., Scarani, V.: Device-independent bounds for Hardy’s experiment. Phys. Rev. Lett. 109, 180401 (2012)

    Article  ADS  Google Scholar 

  33. Seshadreesan, K.P., Ghosh, S.: Constancy of maximal nonlocal probability in Hardy’s nonlocality test for bipartite quantum systems. J. Phys. A Math. Theor. 44, 315305 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Bamps, C., Pironio, S.: Sum-of-squares decompositions for a family of Clauser–Horne–Shimony–Holt-like inequalities and their application to self-testing. Phys. Rev. A 91, 052111 (2015)

    Article  ADS  Google Scholar 

  35. Yang, T.H., Navascués, M.: Robust self-testing of unknown quantum systems into any entangled two-qubit states. Phys. Rev. A 87, 050102(R) (2013)

    Article  ADS  Google Scholar 

  36. Šupić, I., Augusiak, R., Salavrakos, A., Acín, A.: Self-testing protocols based on the chained Bell inequalities. arxiv:1511.09220

Download references

Acknowledgments

The author would like to thank the Associate Editor Michael Frey and two anonymous referees for their comments and suggestions regarding an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Cereceda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cereceda, J.L. Chained Clauser–Horne–Shimony–Holt inequality for Hardy’s ladder test of nonlocality. Quantum Inf Process 15, 1779–1792 (2016). https://doi.org/10.1007/s11128-015-1217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1217-4

Keywords

Navigation