Skip to main content
Log in

Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Protecting entanglement from decoherence has attracted more and more attention recently. Amplitude damping is a typical decoherence mechanism. If we detect the environment to guarantee no excitation escapes from the system, the amplitude damping is modified into a weak measurement of the system state. In this paper, based on local pulse series, we propose a scheme for protecting tripartite entanglement against decaying caused by weak-measurement-induced damping. Unlike previous bipartite state protection schemes, we consider three different situations: A series of unitary operations are applied on all of the three qubits, on two of the three qubits, and on only one qubit. The results show that this protocol can protect remote tripartite entanglement with a wide range of unitary operations. For the case of GHZ state, when the uniform pulses are applied on all qubits or on two qubits, the tripartite entanglement can be fixed around the entanglement of the initial state. Moreover, in the W state case, if a train of uniform pulses is applied on two qubits, we can see that the bipartite entanglement can be enhanced to the maximum with the third qubit being traced out. We also generalize our scheme to the cases of the superposition and mixture of GHZ and W states, and the numerical simulation shows that our protection scheme still works fine. The most distinct advantage of this entanglement protection scheme is that there is no need for the users to synchronize their operations. The fluctuations of the time interval between two adjacent local unitary operations, the operation parameters, and the pulse duration are all taken into consideration. All these advantages suggest that our scheme is much simpler and feasible, which may warrant its experimental realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bouwmeester, D.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Kim, Y.-H., Kulik, S.P., Shih, Y.H.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001)

    Article  ADS  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(1–6), 022321 (2008)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  10. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Ekert, A., Macchiavello, C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585–2588 (1996)

    Article  ADS  Google Scholar 

  12. Lidar, D.A., Chuang, I., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  13. Kwiat, P.G., et al.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  14. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Wang, Y., Rong, X., Feng, P.B., Xu, W.J., Bo Chong, J.H., Gong, J.B., Du, J.F.: Preservation of bipartite pseudoentanglement in solids using dynamical decoupling. Phys. Rev. Lett. 106(1–4), 040501 (2011)

    Article  ADS  Google Scholar 

  16. Zhang, J.F., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112(1–5), 050502 (2014)

    Article  ADS  Google Scholar 

  17. Man, Z.X., Xia, Y.J., An, N.B.: On-demand contro of coherence transfer between interacting qubits surrounded by a dissipative environment. Phys. Rev. A 89(1–9), 013852 (2014)

    Article  ADS  Google Scholar 

  18. Man, Z.X., An, N.B., Xia, Y.J., Kim, J.: Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains. Ann. Phys. 351, 739–750 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  19. Man, Z.X., An, N.B., Xia, Y.J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80(1–5), 033838 (2009)

    Article  ADS  Google Scholar 

  21. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81(1–4), 040103 (2010)

    Article  ADS  Google Scholar 

  22. Xiao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83(1–4), 054301 (2011)

    Article  ADS  Google Scholar 

  23. Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86(1–9), 012325 (2012)

    Article  ADS  Google Scholar 

  24. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  25. Al-Amri, M., Scully, M.O., Zubairy, M.S.: Reversing the weak measurement on a qubit. J. Phys. B 44(1–5), 165509 (2011)

    Article  ADS  Google Scholar 

  26. Liao, Z.Y., Al-Amri, M., Zubairy, M.S.: Protecting quantum entanglement from amplitude damping. J. Phys. B 46(1–9), 145501 (2013)

    Article  ADS  Google Scholar 

  27. Sun, Q.Q., Al-Amri, M., Davidovich, M.L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82(1–5), 052323 (2010)

    Article  ADS  Google Scholar 

  28. Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89(1–11), 032303 (2014)

    Article  ADS  Google Scholar 

  29. Gross, C., Zibold, T., Nicklas, E., Esteve, J., Oberthaler, M.K.: Nonlinear atom interferometer surpasses classical precision limit. Nature (London) 464, 1165–1169 (2010)

    Article  ADS  Google Scholar 

  30. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1–12), 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. Zong, X.L., Du, C.Q., Yang, M., Qing, Q., Cao, Z.L.: Protecting remote bipartite entanglement against amplitude damping by local unitary operations. Phys. Rev. A 90(1–8), 062345 (2014)

    Article  ADS  Google Scholar 

  32. Weisskopf, V., Wigner, E.: Berechnung der natrlichen linienbreite auf grund der diracschen lichttheorie. Z. Phys. 63, 54–73 (1930)

    Article  MATH  ADS  Google Scholar 

  33. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737–5742 (1999)

    Article  ADS  Google Scholar 

  34. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(1–11), 032314 (2002)

    Article  ADS  Google Scholar 

  35. Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(1–4), 035801 (2003)

    Article  ADS  Google Scholar 

  36. Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10(1–10), 043014 (2008)

    Article  ADS  Google Scholar 

  37. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) under Grants Nos. 11274010, 11204002, 11374085 and 11204061; the Specialized Research Fund for the Doctoral Program of Higher Education (Grants Nos. 20113401110002 and 20123401120003); the Key Program of the Education Department of Anhui Province under Grants Nos. KJ2012A020, KJ2012A244, and KJ2012A206; the “211” Project of Anhui University; the Talent Foundation of Anhui University under Grant No. 33190019; the personnel department of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, XL., Du, CQ., Yang, M. et al. Protecting multipartite entanglement against weak-measurement-induced amplitude damping by local unitary operations. Quantum Inf Process 14, 3423–3440 (2015). https://doi.org/10.1007/s11128-015-1041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1041-x

Keywords

Navigation