Skip to main content
Log in

Entangled spin states in geodesic motion around massive body

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the effect of the gravitational field of a massive body on the spin entanglement of a two-qubit system in the singlet and triplet spin states in circular geodesic motion. We study the entanglement transport using Wootters concurrence, which depends on the momentum state of the system. We describe the behavior of the concurrence as a function of the orbital radius and show that the spin entanglement is more robust against changes caused by motion in the singlet state than in the triplet state. Furthermore, for the singlet (triplet) state, momentum correlation increases (decreases) the concurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phys. Rev. Lett. 88, 230402 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  3. Terashima, H., Ueda, M.: Einstein–Podolsky–Rosen correlation seen from moving observers. Quant. Inf. Comput. 3, 224–228 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Ahn, D., Lee, H.J., Moon, Y.H., Hwang, S.W.: Relativistic entanglement and Bell’s inequality. Phys. Rev. A 67, 012103 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  6. Lee, D., Ee, C.Y.: Quantum entanglement under Lorentz boost. New J. Phys. 6, 67 (2004)

    Article  ADS  Google Scholar 

  7. Li, H., Du, J.: Relativistic invariant quantum entanglement between the spins of moving bodies. Phys. Rev. A 68, 022108 (2003)

    Article  ADS  Google Scholar 

  8. Castro-Ruiz, E., Nahmad-Achar, E.: Entanglement properties of a system of two spin-1 particles under a Lorentz transformation. Phys. Rev. A 86, 052331 (2012)

    Article  ADS  Google Scholar 

  9. Palge, V., Dunningham, J.: Generation of maximally entangled states with subluminal Lorentz boosts. Phys. Rev. A 85, 042322 (2012)

    Article  ADS  Google Scholar 

  10. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  11. Martin-Martinez, E., Leon, J.: Quantum correlations through event horizons: Fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  12. Leon, J., Martin-Martinez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009)

    Article  ADS  Google Scholar 

  13. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Alsing, P.M., Fuentes, I.: Observer-dependent entanglement. Class. Quantum Grav. 29, 224001 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  15. Terashima, H., Ueda, M.: Spin decoherence by spacetime curvature. J. Phys. A 38, 2029–2039 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Nasr Esfahani, B., Ahmadi, M., Ahmadi, F.: Fidelity of two-particle wave packets moving around the Schwarzschild spacetime. Int. J. Theor. Phys. 47, 3130–3138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nasr Esfahani, B.: Spin entanglement of two spin-1/2 particles in a classical gravitational field. J. Phys. A 43, 455305 (2010)

  18. Bakke, K.: A.M. de M. Carvalho, and C. Furtado, Influence of the topology in EPR correlations. J. Phys. A 41, 065301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Ahmadi, F., Mehrafarin, M.: Entanglement of three-qubit spin states moving in the gravitational field of a massive body. J. Phys. A 45, 485302 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  21. Weinberg, S.: The quantum Theory of Fields. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  22. Nasr Esfahani, B., Dehdashti, S.: Gravitational spin entropy production. Int. J. Theor. Phys. 45, 1495–1505 (2007)

  23. Alsing, P.M., Milburn, G.J.: Lorentz invariance of entanglement. Quantum Inf. Comput. 2, 487 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Friis, A., Bertlmann, R.A., Huber, M., Hiesmayr, B.C.: Relativistic entanglement of two massive particles. Phys. Rev. A 81, 042114 (2010)

    Article  ADS  Google Scholar 

  25. Saldanha, P.L., Vedral, V.: Spin quantum correlations of relativistic particles. Phys. Rev. A 85, 062101 (2012)

    Article  ADS  Google Scholar 

  26. Saldanha, P.L., Vedral, V.: Wigner rotations and an apparent paradox in relativistic quantum information. Phys. Rev. A 87, 042102 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehrafarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, F., Mehrafarin, M. Entangled spin states in geodesic motion around massive body. Quantum Inf Process 13, 639–647 (2014). https://doi.org/10.1007/s11128-013-0679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0679-5

Keywords

Navigation