Skip to main content
Log in

Quantum Fisher information for moving three-level atom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum information technology largely relies on a precious and fragile resource, call quantum entanglement, which exhibits a highly nontrivial manifestation of the coherent superposition of states of composite quantum systems. In this article, we discuss the correlation between the quantum entanglement measured by the von Neumann entropy and atomic quantum Fisher information by taking account the case of moving three-level atom. Our results show that there is a monotonic relation between the atomic quantum Fisher information and entanglement in the case of non-moving atom. On the other hand, we find that the atomic quantum Fisher information and entanglement exhibit an opposite changement behavior during the time evolution in the presence of atomic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, X.: Entropy behaviors and statistical properties of the field interacting with a \(\Xi \)-type three-level atom. Physica A 286, 588–598 (2000)

    Article  ADS  Google Scholar 

  2. Abdel-Aty, M., Sebawe, A.M.: Uncertainty relation and information entropy of a time-dependent bimodal two-level system. J. Phys. B 35, 4773 (2002)

    Article  ADS  Google Scholar 

  3. Abdel-Khalek, S., Nofal, T.A.: Correlation and entanglement of a three-level atom inside dissipative cavity. Physica A 390, 2626–2635 (2011)

    Article  ADS  Google Scholar 

  4. Berrada, K., Abdel-Khalek, S.: Entanglement of atom-field interaction for nonlinear-optical fields. Physica E 44, 628–634 (2011)

    Article  ADS  Google Scholar 

  5. El-Shahat, T.M., Abdel-Khalek, S., Abdel-Aty, M., Obada, A.S.F.: Aspects on entropy squeezing of a two-level atom in a squeezed vacuum. Chaos Solitons Fractals 18, 289 (2003)

    Article  MATH  ADS  Google Scholar 

  6. El-Shahat, T.M., Abdel-Khalek, S., Obada, A.S.F.: Entropy squeezing of a driven two-level atom in a cavity with injected squeezed. Chaos Solitons Fractals 26, 1293 (2005)

    Article  MATH  ADS  Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Hayashi, M.: Quantum Information: An Introduction. Springer, Berlin (2006)

    Google Scholar 

  9. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  12. Yin, Z.Q., et al.: Security of counterfactual quantum cryptography. Phys. Rev. A 82, 042335 (2010)

    Article  ADS  Google Scholar 

  13. Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  14. Morimae, T.: Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation. Phys. Rev. A 81, 060307 (2010)

    Article  ADS  Google Scholar 

  15. Schaffry, M., et al.: Quantum metrology with molecular ensembles. Phys. Rev. A 82, 042114 (2010)

    Article  ADS  Google Scholar 

  16. Wisemann, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  17. Wootters, W.K.: Entanglement of formation and concurrence. Quantum. Inform. Comput. 1, 27 (2001)

    MATH  MathSciNet  Google Scholar 

  18. Berrada, K., Hassouni, Y.: Maximal entanglement of bipartite spin states in the context of quantum algebra. Eur. Phys. J. D 61, 513 (2011)

    Article  ADS  Google Scholar 

  19. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  20. Popescu, S., Rohrlich, D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  21. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  23. Berrada, K., Abdel-Khalek, S.: Quantum metrology with entangled spin-coherent states of two modes. Phys. Rev. A 86, 033823 (2012)

    Article  ADS  Google Scholar 

  24. Abdel-Khalek, S., Khalil, E.M., Ali, S.I.: Entanglement of a two-level atom papered in a finite Trio-Coherent state. Laser physics 18, 135–143 (2008)

    Article  ADS  Google Scholar 

  25. Abdel-Khalek, S., Obada, A.S.F.: New features of Wehrl entropy and Wehrl PD of a single-Cooper pair box placed inside a dissipative cavity. Ann. Phys. 325, 2542–2549 (2010)

    Article  MATH  ADS  Google Scholar 

  26. Obada, A.-S.F., Abdel-Khalek, S.: Entanglement evaluation with atomic Fisher information. Physica A 389, 891–898 (2010)

    Article  ADS  Google Scholar 

  27. Abdel-Khalek, S.: Dynamics of Fisher information in Kerr medium. Int. J. of Quantum Inform. 7, 1541–1548 (2009)

    Article  MATH  Google Scholar 

  28. Obada, A.-S.F., Abdel-Khalek, S., Plastino, A.: Information quantifiers’s description of weak field vs. strong field dynamics for a trapped ion in a laser field. Physica A 390, 525–533 (2011)

    Article  ADS  Google Scholar 

  29. Abdel-Khalek, S., Berrada, K., Obada, A.S.F.: An investigation of quantum Fisher information of a single qubit system. Eur. Phys. J. D. 66, 69 (2012)

    Article  ADS  Google Scholar 

  30. Berrada, K., Abdel-Khalek, S., Obada, A.S.F.: Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 376, 1412–1416 (2012)

    Article  MATH  ADS  Google Scholar 

  31. Pennini, F., Plastino, A.: Escort Husimi distributions, Fisher information and nonextensivity. Phys. Lett. A 326, 20–26 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Frieden, B.R.: Physics from Fisher Information. Cambridge University Press, Cambridge (1998); Science from Fisher Information 2004 (England: Cambridge University Press, Cambridge)

  33. Lavis, D.A., Streater, R.F.: Essay review ‘Physics from Fisher Information’ by [studies in the history and philosophy of modern. Physics 33, 327 (2002)

    Google Scholar 

  34. Barndorff-Nielsen, O.E., Gill, R.D., Jupp, P.E.: On quantum statistical inference. J. R. Stat. Soc. B 65, 775–816 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fujiwara, A.: Estimation of SU(2) operation and dense coding: an information geometric approach. Phys. Rev. A 65, 012316 (2001)

    Article  ADS  Google Scholar 

  36. Lu, X., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  37. Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 44, 6023–6029 (1991)

    Article  ADS  Google Scholar 

  38. Buzek, V., Moya-Cessa, H., Knight, P.L.: Schrödinger-cat states in the resonant Jaynes–Cummings model: collapse and revival of oscillations of the photon-number distribution. Phys. Rev. A 45, 8190–8203 (1992)

    Article  ADS  Google Scholar 

  39. Abdel-Khalek, S., El-Saman, Y.S., Abdel-Aty, M.: Geometric phase of a moving three-level atom. Opt. Commun. 283, 1826–1831 (2010)

    Article  ADS  Google Scholar 

  40. Sargent III, M., Scully, M.O., Lamb Jr, W.E.: Laser Physics. Addison-Wesley, Reading (1974)

    Google Scholar 

  41. Li, X., Lin, D.L., Gong, C.: Nonresonant interaction of a three-level atom with cavity fields. Phys. Rev. A 36, 5209–5219 (1987)

    Article  ADS  Google Scholar 

  42. Enaki, N.A., Ciobanu, N.: Horopter measured as a function of wavelength. J. Mod. Opt. 55, 589–598 (2008)

    Article  Google Scholar 

  43. Berrada, K., Abdel-Khalek, S.: Geometric phase and entanglement for a single qubit interacting with deformed-states superposition. Quant. Inf. Process. 12, 2177–2188 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Khalek, S. Quantum Fisher information for moving three-level atom. Quantum Inf Process 12, 3761–3769 (2013). https://doi.org/10.1007/s11128-013-0622-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0622-9

Keywords

Navigation