Skip to main content
Log in

Three-particle deterministic secure and high bit-rate direct quantum communication protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme for deterministic secure and high bit-rate direct communication without resorting to a distinct control interval is proposed. It utilizes three entangled qubits, and presents higher bit transfer rate of information and higher security. The security of protocol is asserted by introducing a security control for each transferred bit. The protocol is investigated for a class of individual attacks and it is explicitly showed that the protocol has a high security even in the presence of channel loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennet, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and, Signal Processing (1984)

  2. Massar, S.: Fiber optics protocols for quantum communication. Quantum Inf. Process. 5(6), 441–449 (2006). doi:10.1007/s11128-006-0029-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Molotkov, S.N.: On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with “blinding” of avalanche photodetectors. J. Exp. Theor. Phys. 114(5), 707–723 (2012). doi:10.1134/s106377611203017x

    Article  MathSciNet  ADS  Google Scholar 

  4. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process., 1–19 (2012). doi:10.1007/s11128-012-0456-x

  5. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101(3), 357–368 (2002)

    ADS  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  7. Cai, Q.Y.: The “ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)

    Google Scholar 

  8. Boström, K., Felbinger, T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008). doi:10.1016/j.physleta.2008.03.048

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Vasiliu, E.V.: Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10(2), 189–202 (2011). doi:10.1007/s11128-010-0188-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Zawadzki, P.: Security of ping-pong protocol based on pairs of completely entangled qudits. Quantum Inf. Process. 11(6), 1419–1430 (2012). doi:10.1007/s11128-011-0307-1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  12. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Google Scholar 

  13. Kye, W.-H., Kim, C.-M., Kim, M.S., Park, Y.-J.: Quantum key distribution with blind polarization bases. Phys. Rev. Lett. 95(4), 040501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chamoli, A., Bhandari, C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8(4), 347–356 (2009). doi:10.1007/s11128-009-0112-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Shimizu, K., Tamaki, K., Fukasaka, H.: Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair. Phys. Rev. A 80(2), 022323 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Zawadzki, P.: Improving security of the ping-pong protocol. Quantum Inf. Process. 12(1), 149–155 (2013). doi:10.1007/s11128-012-0363-1

    Article  ADS  MATH  Google Scholar 

  17. Cai, Q.-Y., Li, B.-W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69(5), 054301 (2004)

    Article  ADS  Google Scholar 

  18. Naseri, M.: Comment on: “secure direct communication based on ping-pong protocol” [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inf. Process. 9(6), 693–698 (2009). doi:10.1007/s11128-009-0157-2

    Article  MathSciNet  Google Scholar 

  19. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012). doi:10.1007/s10773-012-1286-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, S.-J., Gao, F., Guo, F.-Z., Wen, Q.-Y.: Comment on “Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair”. Phys. Rev. A 82(3), 036301 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lin, S., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79(5), 054303 (2009)

    Article  ADS  Google Scholar 

  22. Lu, H., Fung, C.-H.F., Ma, X., Cai, Q.-Y.: Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys. Rev. A 84(4), 042344 (2011)

    Article  ADS  Google Scholar 

  23. Fung, C.-H.F., Ma, X., Chau, H.F., Cai, Q.-Y.: Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol. Phys. Rev. A 85(3), 032308 (2012)

    Article  ADS  Google Scholar 

  24. Wojcik, A.: Eavesdropping on the “ping-pong” quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)

    Article  ADS  Google Scholar 

  25. Zhang, Z., Man, Z., Li, Y.: Improving Wojcik’s eavesdropping attack on the ping-pong protocol. Phys. Lett. A 333(1–2), 46–50 (2004). doi:10.1016/j.physleta.2004.10.025

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)

    Article  ADS  Google Scholar 

  27. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Modern Phys. 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  28. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Modern Phys. 82(2), 1155–1208 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Modern Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  30. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soudeh Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahanshahi, S., Bahrampour, A. & Zandi, M.H. Three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf Process 12, 2441–2451 (2013). https://doi.org/10.1007/s11128-013-0543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0543-7

Keywords

Navigation