Skip to main content
Log in

Correlation quantum beats induced by non-Markovian effect

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

For two qubits independently coupled to their respective structured reservoirs (Lorentzian spectrum), quantum beats for entanglement and discord are found which are the result of quantum interference between correlation oscillations induced by local non-Markovian environments. We also discuss the preservation of quantum correlations by the effective suppression of the spontaneous emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (1–4) (2003)

  3. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (1–4) (2001)

  4. Cirac J.I., Ekert A.K., Huelga S.F., Macchiavello C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Einstein A., Podolsky B., Rosen R.: Can quantum mechanical description of physical reality be considered complete?. Phys. Rev. A 47, 777–780 (1935)

    ADS  MATH  Google Scholar 

  6. Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901, (1–4) (2001)

  7. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502, (1–4) (2008)

  8. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501, (1–4) (2008)

  9. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413, (1–7) (2008)

  10. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108, (1–9) (2009)

  11. Cui J., Fan H.: Correlations in the Grover search. J. Phys. A: Math. Theor. 43, 045305 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Shabani, A., Lidar, D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps Phys. Rev. Lett. 102, 100402, (1–4) (2009)

  13. Ann K., Jaeger G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found. Phys. 39, 790–828 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404, (1–4) (2004)

  15. Werlang, T., Souza, S., Fanchini, F.F., Villas Boas, C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103, (1–4) (2009)

  16. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103 210401, (1–4) (2009)

  17. Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105 050403, (1–4) (2010)

  18. Wolf, M., Eisert, J., Cubitt, T. S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101 150402, (1–4) (2008)

  19. Dijkstra, A.G., Tanimura, Y.: Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104 250401, (1–4) (2010)

  20. Jing, J., Yu, T.: Non-Markovian relaxation of a three-level system: Quantum trajectory approach. Phys. Rev. Lett. 105 240403, (1–4) (2010)

  21. Haikka, P., Maniscalco, S.: Non-Markovian dynamics of a damped driven two-state system. Phys. Rev. A 81 052103, (1–11) (2010)

  22. Xu, J. S., Li, C. F., Gong, M., Zou, X. B., Shi, C. H., Chen, G., Guo, G. C.: Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 104 100502, (1–4) (2010)

  23. Breuer H.P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  24. Kubota, Y., Nobusada, K.: Applicability of site-basis time-evolution equation for thermalization of exciton states in a quantum dot array. J. Phys. Soc. Jpn. 78 114603, (1–7) (2009)

    Google Scholar 

  25. Kane B.E.: A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  Google Scholar 

  26. Shao, J.: Decoupling quantum dissipation interaction via stochastic fields. J. Chem. Phys. 120 5053, (1–4) (2004)

  27. Chin, A.W., Datta, A., Caruso, F., Huelga, S.F., Plenio, M.B.: Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys.12 065002, (1–16) (2010)

  28. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99 160502, (1–4) (2007)

  29. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78 060302(R), (1–4) (2008)

  30. Tong, Q. J., An, J. H., Luo, H. G., Oh, C. H.: Mechanism of entanglement preservation. Phys. Rev. A 81 052330, (1–5) (2010)

  31. Xiao, X., Fang, M. F., Li, Y. L., Zeng, K., Wu, C.: Robust entanglement preserving by detuning in non-Markovian regime. J. Phys. B: At. Mol. Opt. Phys. 42 235502, (1–6) (2009)

  32. Laine, E. M., Piilo, J., Breuer, H. P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81 062115, (1–8) (2010)

  33. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  34. Francica, F., Maniscalco, S., Piilo, J., Plastina, F., Suominen, K. A.: Off-resonant entanglement generation in a lossy cavity. Phys. Rev. A 79 032310, (1–10) (2009)

  35. Ali, M., Rau, A. R. P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81 042105, (1–7) (2010)

  36. Kleppner D.: u(3)-Boson model of nuclear collective motion. Phys. Rev. Lett. 47, 223–226 (1981)

    Article  ADS  Google Scholar 

  37. Goy P., Raimond J.M., Gross M., Haroche S.: Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983)

    Article  ADS  Google Scholar 

  38. Purcell E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–685 (1946)

    Article  Google Scholar 

  39. Wang, Q., Liao, J. Q., Zeng, H. S.: Quantum thermal discord in a two-spin-1/2 XXZ model. Chin. Phys. B 19 100311, (1–5) (2010)

  40. Mogilevtsev, D., Nisovtsev, A. P., Kilin, S., Cavalcanti, S. B., Brandi, H. S., Oliveira, L. E.: Driving-dependent damping of Rabi oscillations in two-level semiconductor systems. Phys. Rev. Lett. 100 017401, (1–4) (2008)

  41. Dubin, F., Rotter, D., Mukherjee, M., Russo, C., Eschner, J., Blatt, R.: Photon correlation versus interference of single-atom fluorescence in a half-cavity. Phys. Rev. Lett. 98 183003, (1–4) (2007)

  42. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauss, M., Kwon, S. H., Schneider, C., Löffler, A., Höfling, S., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90 251109, (1–3) (2007)

  43. Bayer, M., Forchel, A.: Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 65 041308(R), (1–4) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, HS., Zheng, YP., Tang, N. et al. Correlation quantum beats induced by non-Markovian effect. Quantum Inf Process 12, 1637–1650 (2013). https://doi.org/10.1007/s11128-012-0437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0437-0

Keywords

Navigation