Skip to main content
Log in

Practical quantum bit commitment protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum protocol for bit commitment the security of which is based on technological limitations on non demolition measurements and long-term quantum memory is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiesner S.: Conjugate coding. ACM Sigact News 15(1), 78–88 (1983)

    Article  Google Scholar 

  2. MagiQ. http://www.magiqtech.com/

  3. id Quantique. http://www.idquantique.com/

  4. Toshiba-QIG. http://www.toshiba-europe.com/research/crl/QIG/

  5. Bennett, C., Brassard, G. et al.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, Bangalore, India (1984)

  6. Ekert A.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Brassard, G., Crepeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: Proceedings of 34th Annual Symposium on Foundations of Computer Science, vol. 1, p. 362. IEEE Computer Society (1993)

  8. Lo H., Chau H.: Is quantum bit commitment really possible?. Phys. Rev. Lett. 78(17), 3410–3413 (1997)

    Article  ADS  Google Scholar 

  9. Mayers D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414–3417 (1997)

    Article  ADS  Google Scholar 

  10. Munro W., Nemoto K., Beausoleil R., Spiller T.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71(3), 33819 (2005)

    Article  ADS  Google Scholar 

  11. Bennett C., Bessette F., Brassard G., Salvail L., Smolin J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    Article  MATH  Google Scholar 

  12. Damgard, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: Proceedings of 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005. pp. 449–458. IEEE (2005)

  13. Franson J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989)

    Article  ADS  Google Scholar 

  14. Brendel J., Gisin N., Tittel W., Zbinden H.: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)

    Article  ADS  Google Scholar 

  15. Townsend P., Rarity J., Tapster P.: Enhanced single photon fringe visibility in a 10- km-long prototype quantum cryptography channel. Electron. Lett. 29(14), 1291–1293 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Vaidman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danan, A., Vaidman, L. Practical quantum bit commitment protocol. Quantum Inf Process 11, 769–775 (2012). https://doi.org/10.1007/s11128-011-0284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0284-4

Keywords

Navigation