Skip to main content
Log in

A note on the assumed distributions in stochastic frontier models

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

Stochastic frontier models all need an assumption on the distributional form of the (in)efficiency component. Generally this efficiency component is assumed to be half normally, truncated normally, or exponentially distributed. This paper shows that the exponential distribution is, just like the half normal distribution, a special case of the truncated normal distribution. Moreover, this paper discusses the implications that this finding has on estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The proof that \(C\) indeed goes to one and thus that the likelihood is properly defined if \(\mu \rightarrow -\infty\) and \(\sigma \rightarrow \infty\) is given in the “Appendix”.

  2. The other possibility, a converged truncated SF model on exponential data is left for future research. Since the parameters are at the bound of the parameter space and the nesting of the two models is based on a ratio it is not certain that standard tests are appropriate.

References

  • Aigner D, Lovell C, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econom 6:21–37

    Article  Google Scholar 

  • Battese G, Coelli TJ (1995) A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir Econ 20:325–332

    Article  Google Scholar 

  • Greene W (1990) A gamma-distibuted stochastic frontier model. J Econom 46:141–163

    Article  Google Scholar 

  • Huang C, Liu JT (1994) Estimation of a non-neutral stochastic frontier production function. J Prod Anal 5:171–180

    Article  Google Scholar 

  • Kumbhakar S, Ghosh S, McGuckin J (1991) A generalized production frontier approach for estimating determinants of determinants of inefficiency in u.s. dairy farms. J Bus Econ Stat 9:279–286

    Google Scholar 

  • Lai H-P, Huang CJ (2010) Likelihood ratio tests for model selection of stochastic frontier models. J Prod Anal 34:3–13

    Article  Google Scholar 

  • Meeusen W, van den Broeck J (1977) Efficiency estimation from cobb-douglas production functions with composederror. Int Econ Rev 18:435–444

    Article  Google Scholar 

  • Ritter C, Simar L (1997) Pitfalls of normal-gamma stochastic frontier models. J Prod Anal 8:167–182

    Article  Google Scholar 

  • Stevenson R (1980) Likelihood functions for generalized stochastic frontier estimation. J Econom 13:57–66

    Article  Google Scholar 

  • Wang WS, Amsler C, Schmidt P (2011) Goodness of fit tests in stochastic frontier models. J ProdAnal 35:95–118

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank one anonymous referee and the editor for their suggestions. This research was supported by the European Commission, Research Directorate General as part of the 7th Framework Programme, Theme 8, “Socio-Economic Sciences and Humanities” and is part of the project “Indicators for evaluating international performance in service sectors” (INDICSER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljar Meesters.

Appendix: Proof of \(C\rightarrow 1\)

Appendix: Proof of \(C\rightarrow 1\)

The \(C\) parameter in Eq. (2) can be written as:

$$\begin{aligned} C\left( \mu ,\lambda \right)&= \frac{\exp \left( \frac{\mu }{2\lambda }\right) \sqrt{-\mu \lambda }}{\varPhi \left( -\sqrt{\frac{-\mu }{\lambda }}\right) \left( -\mu \right) \sqrt{2\pi }}\nonumber \\&= \frac{\exp \left( \frac{\mu }{2\lambda }\right) \sqrt{\lambda }}{\varPhi \left( -\sqrt{\frac{-\mu }{\lambda }}\right) \sqrt{-\mu }\sqrt{2\pi }}\nonumber \\&= \frac{\frac{1}{\sqrt{2\pi }}\exp \left( \frac{\mu }{2\lambda }\right) }{\varPhi \left( -\sqrt{\frac{-\mu }{\lambda }}\right) }\sqrt{\frac{\lambda }{-\mu }}\nonumber \\&= \frac{\frac{1}{\sqrt{2\pi }}\exp \left( -\frac{1}{2}\frac{-\mu }{\lambda }\right) }{\varPhi \left( -\sqrt{\frac{-\mu }{\lambda }}\right) }\sqrt{\frac{\lambda }{-\mu }}\nonumber \\&= \frac{\phi \left( -\sqrt{\frac{-\mu }{\lambda }}\right) }{\varPhi \left( -\sqrt{\frac{-\mu }{\lambda }}\right) }\sqrt{\frac{\lambda }{-\mu }} \end{aligned}$$
(3)

Where \(\phi \left( \cdot \right)\) and \(\varPhi \left( \cdot \right)\) are the probability and the cumulative density function of the standard normal distribution respectively. The \(\phi \left( \cdot \right) /\varPhi \left( \cdot \right)\) term in Eq. (3) is also known as the inverse Mills ratio. Now, let \(\gamma =-\sqrt{-\mu /\lambda }\) and taking the limit gives:

$$\begin{aligned} \lim _{\gamma \rightarrow -\infty }C\left( \gamma \right)&= \lim _{\gamma \rightarrow -\infty }\frac{\phi \left( \gamma \right) }{\varPhi \left( \gamma \right) }\left( -\frac{1}{\gamma }\right) \\&= -\lim _{\gamma \rightarrow -\infty }\frac{\phi \left( \gamma \right) \frac{1}{\gamma }}{\varPhi \left( \gamma \right) }\\&\hbox {using l'Hopital's rule}\\&= -\lim _{\gamma \rightarrow -\infty }\frac{\phi '\left( \gamma \right) \frac{1}{\gamma }-\phi \left( \gamma \right) \frac{1}{\gamma ^{2}}}{\varPhi '\left( \gamma \right) }\\&= -\lim _{\gamma \rightarrow -\infty }\frac{-\gamma \phi \left( \gamma \right) \frac{1}{\gamma }-\phi \left( \gamma \right) \frac{1}{\gamma ^{2}}}{\phi \left( \gamma \right) }\\&= -\lim _{\gamma \rightarrow -\infty }\left( -1-\frac{1}{\gamma ^{2}}\right) \\&= 1 \end{aligned}$$

and thus \(C\) goes to one if \(\mu\) and \(\sigma\) go to minus infinity and infinity respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meesters, A. A note on the assumed distributions in stochastic frontier models. J Prod Anal 42, 171–173 (2014). https://doi.org/10.1007/s11123-014-0387-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-014-0387-x

Keywords

JEL Classification

Navigation