Skip to main content
Log in

Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad Lone W, Majeed N, Yaqoob U, John R (2022) Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Rep 41(3):603–617

    Article  CAS  PubMed  Google Scholar 

  • Aliakbari M, Cohen SP, Lindlöf A, Shamloo-Dashtpagerdi R (2021) Rubisco activase A (RcaA) is a central node in overlapping gene network of drought and salinity in Barley (Hordeum vulgare L.) and may contribute to combined stress tolerance. Plant Physiol Biochem 161:248–258

    Article  CAS  PubMed  Google Scholar 

  • Allel D, Ben-Amar A, Abdelly C (2018) Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. J Plant Nutr 41(4):497–508

    Article  CAS  Google Scholar 

  • Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M (2022) How do plants respond to combined drought and salinity stress?—A systematic review. Plants 11(21):2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Ra W, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD (2018) Rubisco is not really so bad. Plant Cell Environ 41(4):705–716

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1–31

    Article  CAS  PubMed  Google Scholar 

  • Dangi AK, Sharma B, Khangwal I, Shukla P (2018) Combinatorial interactions of biotic and abiotic stresses in plants and their molecular mechanisms: systems biology approach. Mol Biotechnol 60(8):636–650

    Article  CAS  PubMed  Google Scholar 

  • Dugasa MT, Cao F, Ibrahim W, Wu F (2019) Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiol Plant 165(2):134–143

    Article  CAS  PubMed  Google Scholar 

  • Franco-Navarro JD, Brumós J, Rosales MA, Cubero-Font P, Talón M, Colmenero-Flores JM (2016) Chloride regulates leaf cell size and water relations in tobacco plants. J Exp Bot 67(3):873–891

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169(2):313–321

    Article  CAS  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8(9):1304–1320

    Article  CAS  PubMed  Google Scholar 

  • Huo Y, Zhang J, Zhang B, Chen L, Zhang X, Zhu C (2021) MYC2 transcription factors TwMYC2a and TwMYC2b negatively regulate Triptolide biosynthesis in Tripterygium wilfordii hairy roots. Plants 10(4):679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6(3):686–703

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, Franco-Zorrilla JM (2021) DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. Plant Commun 2(6):100232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Kakishima M, Komatsu S (2007) Proteomic analysis of jasmonic acid-regulated proteins in rice leaf blades. Protein Pept Lett 14(4):311–319

    Article  CAS  PubMed  Google Scholar 

  • Mareri L, Parrotta L, Cai G (2022) Environmental stress and plants. Int J Mol Sci 23:5416

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhammad I, Shalmani A, Ali M, Yang Q-H, Ahmad H, Li FB (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry MA, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64(3):717–730

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Sakoda K, Fukayama H, Kondo E, Suzuki Y, Makino A, Terashima I, Yamori W (2021) Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. Plant Cell Environ 44(7):2308–2320

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M (2021) Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep 40(8):1513–1541

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109(2):373–389

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Chmielewska K, Sawikowska A, Marczak Ł, Łuczak M, Bednarek P, Mikołajczak K, Ogrodowicz P, Kuczyńska A, Krajewski P (2019) Identification of drought responsive proteins and related proteomic QTLs in barley. J Exp Bot 70(10):2823–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins J, Habte E, Templer S, Colby T, Schmidt J, Von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64(11):3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundle SJ, Zielinski RE (1991) Alterations in barley ribulose-1, 5-bisphosphate carboxylase/oxygenase activase gene expression during development and in response to illumination. J Biol Chem 266(22):14802–14807

    Article  CAS  PubMed  Google Scholar 

  • Saeid Nia M, Scholz L, Garibay-Hernández A, Mock H-P, Repnik U, Selinski J, Krupinska K, Bilger W (2023) How do barley plants with impaired photosynthetic light acclimation survive under high-light stress? Planta 258(4):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakellariou M, Mylona PV (2020) New uses for traditional crops: the case of barley biofortification. Agronomy 10(12):1964

    Article  CAS  Google Scholar 

  • Schneider G, Lindqvist Y, Branden CI (1992) RUBISCO: structure and mechanism. Ann Rev Biophys Biomol Struct 21(1):119–143

    Article  CAS  Google Scholar 

  • Shamloo-Dashtpagerdi R, Lindlöf A, Niazi A, Pirasteh-Anosheh H (2019) LOS2 gene plays a potential role in barley (Hordeum vulgare L.) salinity tolerance as a hub gene. Mol Breed 39(8):119

    Article  Google Scholar 

  • Shamloo-Dashtpagerdi R, Lindlöf A, Aliakbari M, Pirasteh-Anosheh H (2020) Plausible association between drought stress tolerance of barley (Hordeum vulgare L.) and programmed cell death via MC1 and TSN1 genes. Physiol Plant. https://doi.org/10.1111/ppl.13102

    Article  PubMed  Google Scholar 

  • Shamloo-Dashtpagerdi R, Shahriari AG, Tahmasebi A, Vetukuri RR (2023a) Potential role of the regulatory miR1119-MYC2 module in wheat (Triticum aestivum L.) drought tolerance. Front Plant Sci 14:1161245

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamloo-Dashtpagerdi R, Lindlöf A, Nouripour-Sisakht J (2023b) Unraveling the regulatory role of MYC2 on ASMT gene expression in wheat: Implications for melatonin biosynthesis and drought tolerance. Physiol Plant. https://doi.org/10.1111/ppl.14015

    Article  PubMed  Google Scholar 

  • Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155(2):751–764

    Article  CAS  PubMed  Google Scholar 

  • Shivhare D, Mueller-Cajar O (2018) Rubisco activase: the molecular chiropractor of the world’s most abundant protein. In: Barber J (ed) Photosynthesis and bioenergetics. World Scientific, Singapore, pp 159–187

    Google Scholar 

  • Slatyer R, Shmueli E (1967) Measurements of internal water status and transpiration. Irrigation Agric Lands 11:337–353

    Google Scholar 

  • Sparrow-Muñoz I, Chen TC, Burgess SJ (2023) Recent developments in the engineering of Rubisco activase for enhanced crop yield. Biochem Soc Trans 51(2):627–637

    Article  PubMed  Google Scholar 

  • Sun C, Gao X, Fu J, Zhou J, Wu X (2015) Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil 388:99–117

    Article  CAS  Google Scholar 

  • Umar M, Uddin Z, Siddiqui Z (2019) Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica 57(2):627

    Article  CAS  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C (2019) Termination in jasmonate signaling by MYC2 and MTBs. Trends Plant Sci 24(8):667–669

    Article  CAS  PubMed  Google Scholar 

  • Wijewardene I, Mishra N, Sun L, Smith J, Zhu X, Payton P, Shen G, Zhang H (2020) Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA. Plant Sci 296:110499

    Article  CAS  PubMed  Google Scholar 

  • Zhanassova K, Kurmanbayeva A, Gadilgereyeva B, Yermukhambetova R, Iksat N, Amanbayeva U, Bekturova A, Tleukulova Z, Omarov R, Masalimov Z (2021) ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiol Plant 43:1–12

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Agricultural Research, Education and Extension Organization (AREEO) for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

MA and ST conceptualized the study design. MA conducted the bioinformatic and statistical analysis. ST and JNS carried out the experimental evaluations. MA wrote the original article. ST and JNS edited the final article.

Corresponding authors

Correspondence to Massume Aliakbari or Sirous Tahmasebi.

Ethics declarations

Competing interests

The authors declare no competing interests relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliakbari, M., Tahmasebi, S. & Sisakht, J.N. Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress. Photosynth Res 159, 69–78 (2024). https://doi.org/10.1007/s11120-023-01074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01074-2

Keywords

Navigation