Skip to main content
Log in

Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Species distributed across a wide elevation range have broad environmental tolerance and adopt specific adaptation strategies to cope with varying climatic conditions. The aim of this study is to understand the patterns of variation in leaf eco-physiological traits that are related to the adaptation of species with a wide distribution in different climatic conditions. We studied the variability in eco-physiological traits of two co-occurring species of Western Himalaya (Rumex nepalensis and Taraxacum officinale), along elevational gradients. We conducted our study in elevations ranging from 1000 to 4000 m a.s.l. in three transects separated in an eco-region spanning 2.5° latitudes and 2.3° longitudes in the Western Himalaya. We hypothesized substantial variation in eco-physiological traits, especially increased net rate of photosynthesis (PN), Rubisco specific activity (RSA), and biochemicals at higher elevations, enabling species to adapt to varying environmental conditions. Therefore, the photosynthetic measurements along with leaf sampling were carried out during the months of June–August and the variations in photosynthetic performance and other leaf traits were assessed. Data was analyzed using a linear mixed effect model with ‘species,’ ‘elevation’ as fixed and ‘transect’ as random factor. Elevation had a significant effect on majority of traits. It was found that PN and maximum carboxylation rate of Rubisco (Vcmax) have unimodal or declining trend along increasing elevations. High RSA was observed at higher elevations in all the three transects. Trends for biochemical traits such as total soluble sugars, total soluble proteins, proline, and total phenolics content suggested an increase in these traits for the survival of plants in harsh environments of higher elevations. Our study reveals that although there is considerable variation in the eco-physiological traits of the two species across elevational gradients of different transects, there are certain similarities in the patterns that depict their high adaptive potential in varying climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data presented in this study is available from the corresponding author upon request.

References

  • Ahmad KS, Hameed M, Hamid A, Nawaz F, Kiani BH, Ahmad MSA, Deng J, Ahmad F, Hussain I, Fatima S (2018) Beating cold by being tough: impact of elevation on leaf characteristics in Phleum himalaicum Mez. endemic to Himalaya. Acta Physiol Plant 40:1-17. https://doi.org/10.1007/s11738-018-2637-4

    Article  Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2(4):875–877. https://doi.org/10.1038/nprot.2007.102

    Article  CAS  PubMed  Google Scholar 

  • Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Arévalo J, Cavieres L, Dietz H, Jakobs G, McDougall K, Naylor B, Otto R, Parks CG, Rew L, Walsh N (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108(2):656–661. https://doi.org/10.1073/pnas.1013136108

    Article  ADS  PubMed  Google Scholar 

  • Anusuya N, Gomathi R, Manian S, Sivaram V, Menon A (2012) Evaluation of Basella rubra L., Rumex nepalensis Spreng. and Commelina benghalensis L. for antioxidant activity. Int J Pharm Sci 4(3):714–720.

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris Plant Physiology 24(1):1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  Google Scholar 

  • Bahar NHA, Ishida FY, Weerasinghe LK, Guerrieri R, O’Sullivan OS, Bloomfield KJ, Asner GP, Martin RE, Lloyd J, Malhi Y, Phillips OL, Meir P, Salinas N, Cosio EG, Domingues TF, Quesada CA, Sinca F, Escudero Vega A, Zuloaga Ccorimanya PP, Atkin OK (2017) Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol 214(3):1002–1018. https://doi.org/10.1111/nph.14079

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207.

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Begum F, Bajracharya RM, Sitaula BK, Sharma S (2013) Seasonal dynamics, slope aspect and land use effects on soil Mesofauna density in the mid-hills of Nepal. Int J Biodivers Sci, Ecosyst Serv Manag 9(4):290–297. https://doi.org/10.1080/21513732.2013.788565

    Article  Google Scholar 

  • Begum S, AbdIslam NM, Adnan M, Tariq A, Yasmin A, Hameed R (2014) Ethnomedicines of highly utilized plants in the temperate Himalayan region. Afr J Tradit Complement Altern Med 11(3):132–142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattarai KR, Vetaas OR, Grytnes JA (2004) Relationship between plant species richness and biomass in an arid sub-alpine grassland of the central himalayas, nepal. Folia Geobot 39(1):57–71.

    Article  Google Scholar 

  • Björkman O, Badger M, Armond PA (1978) Thermal acclimation of photosynthesis: effect of growth temperature on photosynthetic characteristics and components of the photosynthetic apparatus in Nerium oleander. Carnegie Inst Wash Yearb 77:262–276.

    Google Scholar 

  • Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PS, Weiher E (2018) Plant functional trait change across a warming tundra biome. Nature 562(7725):57–62.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bresson CC, Vitasse Y, Kremer A, Delzon S (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol 31(11):1164–1174.

    Article  CAS  PubMed  Google Scholar 

  • Carlson JE, Adams CA, Holsinger KE (2016) Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Ann Bot 117(1):195–207. https://doi.org/10.1093/aob/mcv146

    Article  PubMed  Google Scholar 

  • Chapin FS III, Oechel WC (1983) Photosynthesis, respiration, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients. Ecology 64(4):743–751.

    Article  CAS  Google Scholar 

  • Chen FS, Niklas KJ, Chen GS, Guo D (2012) Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecol 213(9):1489–1502. https://doi.org/10.1007/s11258-012-0106-5

    Article  Google Scholar 

  • Collen B, Dulvy NK, Gaston KJ, Gärdenfors U, Keith DA, Punt AE, Regan HM, Böhm M, Hedges S, Seddon M, Butchart SHM, Hilton-Taylor C, Hoffmann M, Bachman SP, Akçakaya HR (2016) Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biol Lett 12(4). https://doi.org/10.1098/rsbl.2015.0843

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui G, Li B, He W, Yin X, Liu S, Lian L, Zhang Y, Liang W, Zhang P (2018) Physiological analysis of the effect of altitudinal gradients on Leymus secalinus on the Qinghai-Tibetan Plateau. PLoS ONE 13(9). https://doi.org/10.1371/journal.pone.0202881

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui G, Ji G, Liu S, Li B, Lian L, He W, Zhang P (2019) Physiological adaptations of Elymus dahuricus to high altitude on the Qinghai-Tibetan Plateau. Acta Physiol Plant 41:1–9. https://doi.org/10.1007/s11738-019-2904-z

    Article  Google Scholar 

  • Das DS, Rawat DS, Maity D, Dash SS, Sinha BK (2020) Species richness patterns of different life-forms along altitudinal gradients in the Great Himalayan National Park, Western Himalaya. India Taiwania 65(2):154–162. https://doi.org/10.6165/tai.2020.65.154

    Article  Google Scholar 

  • Devi K, Samant SS, Puri S, Paul S, Samanta SS, Dutt S (2019) Diversity, distribution pattern and indigenous uses of medicinal plants in Kanawar Wildlife Sanctuary of Himachal Pradesh. J Conserv Biol 117:172–219

  • Ding Y, Zang R, Lu X, Huang J, Xu Y (2019) The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. J Veg Sci 30(5):973–983. https://doi.org/10.1111/jvs.12786

    Article  Google Scholar 

  • Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, McInerney FA, Sparrow B, Leitch E, Lowe AJ (2020) Components of leaf-trait variation along environmental gradients. New Phytol 228(1):82–94. https://doi.org/10.1111/nph.16558

    Article  CAS  PubMed  Google Scholar 

  • Donnelly K, Cavers S, Cottrell JE, Ennos RA (2016) Genetic variation for needle traits in Scots pine (Pinus sylvestris L.). Tree Genet Genomes 12:1-10. https://doi.org/10.1007/s11295-016-1000-4

    Article  Google Scholar 

  • Elmendorf SC, Henry GH, Hollister RD, Fosaa AM, Gould WA, Hermanutz L, Walker MD (2015) Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceed Nat Acad Sci 112(2):448–452.

    Article  ADS  CAS  Google Scholar 

  • Escudero NL, de Arellano ML, Fernández S, Albarracín G, Mucciarelli S (2003) Taraxacum officinale as a food source. Plant Foods Hum Nutr 58:1–10. https://doi.org/10.1023/B:QUAL.0000040365.90180.b3

    Article  Google Scholar 

  • Fan Y, Keith Moser W, Cheng Y (2019) Growth and needle properties of young Pinus koraiensis Sieb. et Zucc. trees across an elevational gradient. Forests 10(1):54. https://doi.org/10.3390/f10010054

    Article  Google Scholar 

  • Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazaola JI, Gago J (2020) How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant J 101(4):979–1000. https://doi.org/10.1111/tpj.14694

    Article  CAS  PubMed  Google Scholar 

  • González JA, Gallardo MG, Boero C, Liberman Cruz M, Prado FE (2007) Altitudinal and seasonal variation of protective and photosynthetic pigments in leaves of the world’s highest elevation trees Polylepis tarapacana (Rosaceae). Acta Oecologica 32(1):36–41. https://doi.org/10.1016/j.actao.2007.03.002

    Article  ADS  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: A comparison between null models and interpolated plant species richness along the himalayan altitudinal gradient. Nepal Am Nat 159(3):294–304. https://doi.org/10.1086/338542

    Article  PubMed  Google Scholar 

  • Guerin GR, Wen H, Lowe AJ (2012) Leaf morphology shift linked to climate change. Biol Let 8(5):882–886. https://doi.org/10.1098/rsbl.2012.0458

    Article  Google Scholar 

  • Guo QQ, Li HE, Zhang WH (2016) Variations in leaf functional traits and physiological characteristics of Abies georgei var. smithii along the altitude gradient in the Southeastern Tibetan Plateau. J Mt Sci 13:1818–1828. https://doi.org/10.1007/s11629-015-3715-3

    Article  Google Scholar 

  • Guo ZW, Hu JJ, Chen SL, Li YC, Yang QP, Cai HJ (2017) Nitrogen addition and clonal integration alleviate water stress of dependent ramets of Indocalamus decorus under heterogeneous soil water environment. Sci Rep 7(1):44524. https://doi.org/10.1038/srep44524

    Article  PubMed  PubMed Central  Google Scholar 

  • Halbritter AH, Fior S, Keller I, Billeter R, Edwards PJ, Holderegger R, Karrenberg S, Pluess AR, Widmer A, Alexander JM (2018) Trait differentiation and adaptation of plants along elevation gradients. J Evol Biol 31(6):784–800. https://doi.org/10.1111/jeb.13262

    Article  PubMed  Google Scholar 

  • Hashim AM, Alharbi BM, Abdulmajeed AM, Elkelish A, Hassan HM, Hozzein WN (2020) Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants 9(7):1–23. https://doi.org/10.3390/plants9070869

    Article  CAS  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26(7):1067–1081.

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611. https://doi.org/10.1007/s004250050524

    Article  CAS  Google Scholar 

  • Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J (2021) Scale-dependent effects of niche specialisation: the disconnect between individual and species ranges. Ecol Lett 24(7):1408–1419.

    Article  PubMed  Google Scholar 

  • Hultine KR, Marshall JD (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jamloki A, Singh A, Chandra S, Shukla V, Nautiyal MC, Malik ZA (2023) Population structure, regeneration potential and leaf morphological traits of Rhododendron campanulatum D. Don along an altitudinal gradient in Western Himalaya. Plant Biosyst-an Int J Deal Aspects Plant Biol 157(1):159–174.

    Google Scholar 

  • Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4(6):536–544. https://doi.org/10.1046/j.1461-0248.2001.00262.x

    Article  Google Scholar 

  • Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12(11):2163–2174. https://doi.org/10.1111/j.1365-2486.2006.01250.x

    Article  ADS  Google Scholar 

  • Kahl SM, Kappel C, Joshi J, Lenhard M (2021) Phylogeography of a widely distributed plant species reveals cryptic genetic lineages with parallel phenotypic responses to warming and drought conditions. Ecol Evol 11(20):13986–14002. https://doi.org/10.1002/ece3.8103

    Article  PubMed  PubMed Central  Google Scholar 

  • Kattel DB, Yao T, Yang W, Gao Y, Tian L (2015) Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int J Climatol 35(15):4431–4443. https://doi.org/10.1002/joc.4297

    Article  Google Scholar 

  • Khan SM, Page S, Ahmad H, Harper D (2012) Anthropogenic influences on the natural ecosystem of the naran valley in the western Himalayas. Pak J Bot 44:231–238.

    Google Scholar 

  • Khatri K, Negi B, Bargali K, Bargali SS (2023) Phenotypic variation in morphology and associated functional traits in Ageratina adenophora along an altitudinal gradient in Kumaun Himalaya. India Biologia 78(5):1333–1347

    Article  Google Scholar 

  • Kiełtyk P (2018) Variation of vegetative and floral traits in the alpine plant Solidago minuta: evidence for local optimum along an elevational gradient. Alp Bot 128(1):47–57. https://doi.org/10.1007/s00035-017-0197-7

    Article  Google Scholar 

  • Kirk JTO, Allen RL (1965) Dependence of total carotenoids and chlorophyll “a” and “b” of leaf extracts in different solvents. Biochem Soc Trans 603:591.

    Google Scholar 

  • Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell Environ 26(6):857–865.

    Article  PubMed  Google Scholar 

  • Kollas C, Körner C, Randin CF (2014) Spring frost and growing season length co-control the cold range limits of broad-leaved trees. J Biogeogr 41(4):773–783. https://doi.org/10.1111/jbi.12238

    Article  Google Scholar 

  • Konôpková A, Pšidová E, Kurjak D, Stojnić S, Petrík P, Fleischer P Jr, Kučerová J, Ježík M, Petek A, Gömöry D, Kmeť J, Longauer R, Ditmarová Ľ (2020) Photosynthetic performance of silver fir (Abies alba) of different origins under suboptimal growing conditions. Funct Plant Biol 47(11):1007–1018.

    Article  PubMed  Google Scholar 

  • Körner C (1999) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin, pp 1–338

    Book  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22(11):569–574.

    Article  PubMed  Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69(4):577–588

    Article  ADS  PubMed  Google Scholar 

  • Kouwenberg LL, Kürschner WM, McElwain JC (2007) Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Rev Mineral Geochem 66(1):215–241.

    Article  CAS  Google Scholar 

  • Kumar N, Kumar S, Ahuja PS (2005) Photosynthetic characteristics of Hordeum, Triticum, Rumex, and Trifolium species at contrasting altitudes. Photosynthetica 43(2):195–201.

    Article  CAS  Google Scholar 

  • Kumar N, Kumar S, Vats SK, Ahuja PS (2006) Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. Photosynth Res 88(1):63–71. https://doi.org/10.1007/s11120-005-9028-6

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Kumar Vats S, Kumar S, Ahuja PS (2008) Altitude-related changes in activities of carbon metabolism enzymes in Rumex nepalensis. Photosynthetica 46(4):611–614.

    Article  CAS  Google Scholar 

  • Kumar S, Joseph L, George M, Bharti V (2011) Antimicrobial activity of methanolic extract of Rumex nepalensis leaves. Int J Pharm Pharm Sci 3(4):240–242.

    Google Scholar 

  • Kuster VC, Barbosa De Castro SA, Vale FHA (2016) Photosynthetic and anatomical responses of three plant species at two altitudinal levels in the Neotropical savannah. Aust J Bot 64(8):696–703. https://doi.org/10.1071/BT15280

    Article  CAS  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017). lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13)

  • Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200(4):1166–1175. https://doi.org/10.1111/nph.12452

    Article  PubMed  Google Scholar 

  • Li FL, Bao WK (2014) Elevational trends in leaf size of Campylotropis polyantha in the arid Minjiang River valley, SW China. J Arid Environ 108:1–9. https://doi.org/10.1016/j.jaridenv.2014.04.011

    Article  Google Scholar 

  • Li X, Yang Y, Ma L, Sun X, Yang S, Kong X, Hu X, Yang Y (2014) Comparative proteomics analyses of Kobresia pygmaea adaptation to environment along an elevational gradient on the central Tibetan Plateau. PLoS ONE 9(6):e98410. https://doi.org/10.1371/journal.pone.0098410

    Article  PubMed  PubMed Central  Google Scholar 

  • Lilley RM, Walker DA (1974) An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochimica Et Biophysica Acta (BBA)-Enzymol 358(1):226–229. https://doi.org/10.1016/0005-2744(74)90274-5

    Article  CAS  Google Scholar 

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S (2013) Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7(5):937–948. https://doi.org/10.1038/ismej.2012.168

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Sun X, Kong X, Galvan JV, Li X, Yang S, Yang Y, Yang Y, Hu X (2015) Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics 112:63–82. https://doi.org/10.1016/j.jprot.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  • Májekova M, de Bello F, Doležal J, Lepš J (2014) Plant functional traits as determinants of population stability. Ecology 95(9):2369–2374. https://doi.org/10.1890/13-1880.1

    Article  Google Scholar 

  • Måren IE, Karki S, Prajapati C, Yadav RK, Shrestha BB (2015) Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J Arid Environ 121:112–123. https://doi.org/10.1016/j.jaridenv.2015.06.004

    Article  Google Scholar 

  • Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T et al (2015) Using ecosystem experiments to improve vegetation models. Nat Climate Change 5(6):528–534.

    Article  ADS  Google Scholar 

  • Midolo G, De Frenne P, Hölzel N, Wellstein C (2019) Global patterns of intraspecific leaf trait responses to elevation. Glob Change Biol 25(7):2485–2498

    Article  ADS  Google Scholar 

  • Morente-López J, Kass JM, Lara-Romero C, Serra-Diaz JM, Soto-Correa JC, Anderson RP, Iriondo JM (2022) Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: assessing the adaptive value of marginal populations in an alpine plant. Glob Change Biol 28(13):4143–4162. https://doi.org/10.1111/gcb.16181

    Article  CAS  Google Scholar 

  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11(5):e1001569. https://doi.org/10.1371/journal.pbio.1001569

    Article  PubMed  PubMed Central  Google Scholar 

  • Mungole AJ, Chaturvedi A (2011) Determination of antioxidant activity of Hibiscus sabdariffa L. and Rumex nepalensis Spreng. Int J Pharm Biol Sci 2(1):120–127

    Google Scholar 

  • Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931. https://doi.org/10.1007/s004250050699

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Cotado A, Morales M, Fleta-Soriano E, Villellas J, Garcia MB (2016) Adaptation of the long-lived monocarpic perennial Saxifraga longifolia to high altitude. Plant Physiol 172(2):765–775. https://doi.org/10.1104/pp.16.00877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli A, Zucchetti P (2021) A comprehensive review of the benefits of Taraxacum officinale on human health. Bullet Nat Res Centre 45(1):1–7. https://doi.org/10.1186/s42269-021-00567-1

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., Oksanen, M.J. (2018). Vegan: community ecology package [WWW Document]. R Packag. Version 2. 4-6.

  • Oleksyn J, Modrzynski J, Tjoelker MG, Z· ytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12(4):573–590

    Article  Google Scholar 

  • Oleksyn J, Reich PB, Zythowiak R, Karolewski P, Tjoelker MG (2002) Needle nutrients in geographically diverse Pinus sylvestris L. populations. Ann For Sci 59:1–18

    Article  Google Scholar 

  • Olsen JT, Caudle KL, Johnson LC, Baer SG, Maricle BR (2013) Environmental and genetic variation in leaf anatomy among populations of Andropogon gerardii (Poaceae) along a precipitation gradient. Am J Bot 100(10):1957–1968. https://doi.org/10.3732/ajb.1200628

    Article  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7(9):479–486. https://doi.org/10.1890/080072

    Article  Google Scholar 

  • Pauchard A, Milbau A, Albihn A, Alexander J, Burgess T, Daehler C, Englund G, Essl F, Evengård B, Greenwood GB, Haider S, Lenoir J, McDougall K, Muths E, Nuñez MA, Olofsson J, Pellissier L, Rabitsch W, Rew LJ, Kueffer C (2016) Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions 18(2):345–353. https://doi.org/10.1007/s10530-015-1025-x

    Article  Google Scholar 

  • Pearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: Niche conservatism, divergence and predicted effects of climate change. Ecography 33(6):990–1003. https://doi.org/10.1111/j.1600-0587.2010.06443.x

    Article  ADS  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos AC, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61(3):167–234. https://doi.org/10.1071/BT12225

    Article  Google Scholar 

  • Petrík P, Petek-Petrik A, Mukarram M, Schuldt B, Lamarque LJ (2023) Leaf physiological and morphological constraints of water-use efficiency in C3 plants. AoB Plants 15(4):plad047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennigwerth AA, Bailey JK, Schweitzer JA (2017) Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB Plants 9:plx027. https://doi.org/10.1093/aobpla/plx027

    Article  PubMed  PubMed Central  Google Scholar 

  • Philip J (2006) Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J Veg Sci 17(2):255–260.

    Article  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7):1733–1743. https://doi.org/10.1890/0012-9658(2006)87[1733:ltagpo]2.0.co;2

    Article  PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proceed Royal Soc B: Biol Sci 267(1456):1947–1952. https://doi.org/10.1098/rspb.2000.1234

    Article  CAS  Google Scholar 

  • Qiang WY, Wang XL, Chen T, Feng HY, An LZ, He YQ, Wang G (2003) Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountains. Trees 17:258–262.

    Article  Google Scholar 

  • Rana MS, Samant SS (2011) Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North western Himalaya. Indian J Trad Knowl 10(3):439–459

    Google Scholar 

  • Rao KNV, Sunitha CH, Banji D, Sandhya S, Mahesh V (2011) A study on the nutraceuticals from the genus Rumex. Hygeia J Drugs Med 3(1):76–88.

    CAS  Google Scholar 

  • Rao AN, PS, RD (1981) Leaf photosynthetic characters and crop growth rate in six cultivars of groundnut (Arachis hypogaea L). Photosynthetica, 15:97.

  • Rathore N, Thakur D, Chawla A (2018) Seasonal variations coupled with elevation gradient drives significant changes in ecophysiological and biogeochemical traits of a high altitude evergreen broadleaf shrub, Rhododendron anthopogon. Plant Physiol Biochem 132:708–719

    Article  CAS  PubMed  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J Ecol 102(2):275–301.

    Article  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci 101(30):11001–11006

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Oleksyn J, Tjoelker MG (1996) Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: a common garden test with field-grown trees. Funct Ecol 10(6):768–776.

    Article  Google Scholar 

  • Rixen C, Wipf S, Rumpf SB, Giejsztowt J, Millen J, Morgan JW, Nicotra AB, Venn S, Zong S, Dickinson KJM, Freschet GT, Kurzböck C, Li J, Pan H, Pfund B, Quaglia E, Su X, Wang W, Wang X, Deslippe JR (2022) Intraspecific trait variation in alpine plants relates to their elevational distribution. J Ecol 110:860–875. https://doi.org/10.1111/1365-2745.13848

    Article  Google Scholar 

  • Rokaya MB, Münzbergová Z, Shrestha MR, Timsina B (2012) Distribution patterns of medicinal plants along an elevational gradient in central Himalaya. Nepal J Mt Sci 9(2):201–213. https://doi.org/10.1007/s11629-012-2144-9

    Article  Google Scholar 

  • Ryser P, Aeschlimann U (1999) Proportional dry-mass content as an underlying trait for the variation in relative growth rate among 22 Eurasian populations of Dactylis glomerata sl. Funct Ecol 13(4):473–482

    Article  Google Scholar 

  • Ryser P, Bernardi J, Merla A (2008) Determination of leaf fresh mass after storage between moist paper towels: Constraints and reliability of the method. J Exp Bot 59(9):2461–2467. https://doi.org/10.1093/jxb/ern120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sáenz-Romero C, Kremer A, Nagy L, Újvári-Jármay É, Ducousso A, Kóczán-Horváth A, Mátyás C (2019) Common garden comparisons confirm inherited differences in sensitivity to climate change between forest tree species. PeerJ 7:e6213

    Article  PubMed  PubMed Central  Google Scholar 

  • Sáez PL, Bravo LA, Cavieres LA, Vallejos V, Sanhueza C, Font-Carrascosa M, Gil-Pelegrín E, Peguero-Pina JJ, Galmés J (2017) Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters. J Exp Bot 68(11):2871–2883

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD (2016) What gas exchange data can tell us about photosynthesis. Plant Cell Environ 39(6):1161–1163. https://doi.org/10.1111/pce.12641

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Behera MD, Das AP, Panda RM (2019) Plant richness pattern in an elevation gradient in the Eastern Himalaya. Biodivers Conserv 28(8–9):2085–2104. https://doi.org/10.1007/s10531-019-01699-7

    Article  Google Scholar 

  • Shi Z, Haworth M, Feng Q, Cheng R, Centritto M (2015) Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AoB Plants 7:plv115. https://doi.org/10.1093/aobpla/plv115

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigdel SR, Liang E, Rokaya MB, Rai S, Dyola N, Sun J, Zhang L, Zhu H, Chettri N, Chaudhary RP, Camarero JJ (2023) Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas. Funct Ecol 37(2):383–394.

    Article  CAS  Google Scholar 

  • Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide? Bioscience 47(11):785–793. https://doi.org/10.2307/1313100

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Ann Rev Ecol Evol Syst 44:261–280. https://doi.org/10.1146/annurev-ecolsys-110512-135750

    Article  Google Scholar 

  • Suyal R, Rawat S, Rawal RS, Bhatt ID (2019) Variability in morphology, phytochemicals, and antioxidants in Polygonatum verticillatum (L.) All populations under different altitudes and habitat conditions in Western Himalaya, India. Environ Monit Assess 119:1–18. https://doi.org/10.1007/s10661-019-7687-6

    Article  Google Scholar 

  • Suzuki R, Takahashi K (2020) Effects of leaf age, elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers, Abies veitchii and A. mariesii. J Plant Ecol 13(4):460–469. https://doi.org/10.1093/jpe/rtaa034

    Article  Google Scholar 

  • Tanentzap FM, Stempel A, Ryser P (2015) Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany 93(9):535–541. https://doi.org/10.1139/cjb-2015-0065

    Article  Google Scholar 

  • Taub DR (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Educ Know 3(10):21

  • Thakur D, Chawla A (2019) Functional diversity along elevational gradients in the high altitude vegetation of the western Himalaya. Biodivers Conserv 28(8–9):1977–1996. https://doi.org/10.1007/s10531-019-01728-5

    Article  Google Scholar 

  • Thakur D, Rathore N, Chawla A (2019) Increase in light interception cost and metabolic mass component of leaves are coupled for efficient resource use in the high altitude vegetation. Oikos 128(2):254–263.

    Article  ADS  Google Scholar 

  • Thakur D, Singh L, Chawla A (2020) Reliability of leaf functional traits after delayed measurements. Aust J Bot 68(2):100–107. https://doi.org/10.1071/BT19166

    Article  Google Scholar 

  • Tian M, Yu G, He N, Hou J (2016) Leaf morphological and anatomical traits from tropical to temperate coniferous forests: mechanisms and influencing factors. Sci Rep 6(1):19703. https://doi.org/10.1038/srep19703

    Article  PubMed  PubMed Central  Google Scholar 

  • Volenikova M, Ticha I (2001) Insertion profiles in stomatal density and sizes in Nicotiana Tabacum L. Plantlets Biologia Plantarum 44(2):161–165

    Article  Google Scholar 

  • Wang R, Huang W, Chen L, Ma L, Guo C, Liu X (2011) Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in northeast China. PLoS ONE 6(11):e26209

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Yu G, He N, Wang Q, Xia F, Zhao N, Xu Z, Ge J (2014) Elevation-related variation in leaf stomatal traits as a function of plant functional type: evidence from Changbai Mountain, China. PLoS ONE 9(12):e115395. https://doi.org/10.1371/journal.pone.0115395

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Yu G, He N, Wang Q, Zhao N, Xu Z, Ge J (2015) Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity. Sci Rep 5(1):14454. https://doi.org/10.1038/srep14454

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Prentice IC, Davis TW, Keenan TF, Wright IJ, Peng C (2017) Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytol 213(3):976–982. https://doi.org/10.1111/nph.14332

    Article  PubMed  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227.

    Article  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Rev Ecol Syst 33:125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

  • Winkler M, Lamprecht A, Steinbauer K, Hülber K, Theurillat JP, Breiner F, Choler P, Ertl S, Gutiérrez Girón A, Rossi G, Vittoz P, Akhalkatsi M, Bay C, Benito Alonso JL, Bergström T, Carranza ML, Corcket E, Dick J, Erschbamer B, Pauli H (2016) The rich sides of mountain summits – a pan-European view on aspect preferences of alpine plants. J Biogeogr 43(11):2261–2273. https://doi.org/10.1111/jbi.12835

    Article  Google Scholar 

  • Woodward FI (1990) The impact of low temperatures in controlling the geographical distribution of plants. Philosophical Trans - Royal Soc London B 326(1237):585–593. https://doi.org/10.1098/rstb.1990.0033

    Article  ADS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wright JW, Davies KF, Lau JA, Mccall AC, Mckay JK (2006) Experimental verification of ecological niche modeling in a heterogeneous environment. Ecology 87(10):2433–2439.

    Article  PubMed  Google Scholar 

  • Wu J, Shi Z, Liu S, Centritto M, Cao X, Zhang M, Zhao G (2021) Photosynthetic capacity of male and female Hippophae rhamnoides plants along an elevation gradient in eastern Qinghai-Tibetan Plateau. China Tree Physiol 41(1):76–88. https://doi.org/10.1093/treephys/tpaa105

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Guo W, Xu W, Wei Y, Wang R (2009) Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves. Prog Nat Sci 19(12):1789–1798. https://doi.org/10.1016/j.pnsc.2009.10.001

    Article  Google Scholar 

  • Yadav S, Kumar S, Jain P, Pundir RK, Jadon S, Sharma A, Khetwal KS, Gupta KC (2011) Antimicrobial activity of different extracts of roots of Rumex nepalensis spreng. Indian J Nat Prod Resour 2(1):65–69.

    Google Scholar 

  • Yemm EW, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanzottera M, Dalle Fratte M, Caccianiga M, Pierce S, Cerabolini BEL (2020) Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Commun Ecol 21(1):55–65. https://doi.org/10.1007/s42974-020-00012-9

    Article  Google Scholar 

  • Zhang W, Wang L, Xiang F, Qin W, Jiang W (2020) Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin. China Ecol Indic 110:105892

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author’s wish to thank Director, CSIR-IHBT Palampur for providing the necessary facilities. Mr. Om Parkash and Mr. Girja Nand are acknowledged for field surveys. Ms. Nang Elennie Hopak and Mr. Rahul Rana are acknowledged for help during plant sampling, whereas Mr. Bittu Thakur is acknowledged for help during data analysis. This is CSIR-IHBT Publication No. 5471.

Funding

This study was supported by a financial grant from Council of Scientific and Industrial Research, India (Project MLP 0205).

Author information

Authors and Affiliations

Authors

Contributions

AC: envisaged and planned the work. AC and NM: conducted the field survey and spotted the study sites. NM: conducted the field experiment and sampling and performed all the lab eco-physiological and biochemical analysis. AC and NM: analyzed the data and prepared the draft of the manuscript. Manuscript editing was done by AC. Both the authors read and approved the final manuscript.

Corresponding author

Correspondence to Amit Chawla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 841 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, N., Chawla, A. Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions. Photosynth Res 159, 29–59 (2024). https://doi.org/10.1007/s11120-023-01071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01071-5

Keywords

Navigation