Skip to main content
Log in

The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In oxygenic photosynthetic systems, the cytochrome b6f (Cytb6f) complex (plastoquinol:plastocyanin oxidoreductase) is a heart of the hub that provides connectivity between photosystems (PS) II and I. In this review, the structure and function of the Cytb6f complex are briefly outlined, being focused on the mechanisms of a bifurcated (two-electron) oxidation of plastoquinol (PQH2). In plant chloroplasts, under a wide range of experimental conditions (pH and temperature), a diffusion of PQH2 from PSII to the Cytb6f does not limit the intersystem electron transport. The overall rate of PQH2 turnover is determined mainly by the first step of the bifurcated oxidation of PQH2 at the catalytic site Qo, i.e., the reaction of electron transfer from PQH2 to the Fe2S2 cluster of the high-potential Rieske iron–sulfur protein (ISP). This point has been supported by the quantum chemical analysis of PQH2 oxidation within the framework of a model system including the Fe2S2 cluster of the ISP and surrounding amino acids, the low-potential heme b6L, Glu78 and 2,3,5-trimethylbenzoquinol (the tail-less analog of PQH2). Other structure–function relationships and mechanisms of electron transport regulation of oxygenic photosynthesis associated with the Cytb6f complex are briefly outlined: pH-dependent control of the intersystem electron transport and the regulatory balance between the operation of linear and cyclic electron transfer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Here, the quinol oxidase site is defined as Qo, while this site is often nominated as Qp (see, for instance, Malone et al. (2021) and Sarewicz et al. (2021) and references therein).

Abbreviations

CBC:

The Calvin–Benson cycle

cryo-EM:

Cryogenic electron microscopy

Cyt:

Cytochrome

Cytb 6 f :

The Cyt b6f complex

DFT:

Density functional theory

EPR:

Electron paramagnetic resonance

ETC:

Electron transport chain

ISP:

The iron–sulfur protein

Fd:

Ferredoxin

FNR:

Ferredoxin-NADP-reductase

NDH-1:

NADH dehydrogenase-like complex type-1

PCET:

Proton-coupled electron transfer

PSI and PSII:

Photosystem I and photosystem II, respectively

Pc:

Plastocyanin

PQ, PSQ·, and PQH2 :

Plastoquinone (oxidized), plastosemiquinone, and plastoquinol (completely reduced) forms of plastoquinone; respectively

P700 :

Primary electron donor in PSI

ROS:

Reactive oxygen species

TDS:

Tridecyl-stigmatellin

TMBQH2 :

2,3,5-Trimethylbenzoquinol

WL:

White light

References

  • Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:25–29

    Article  CAS  Google Scholar 

  • Alric J, Pierre Y, Picot D, Rappaport F (2005) Spectral and redox characterization of the heme ci of the cytochrome b6f complex. Proc Natl Acad Sci USA 102:15860–15865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Pfannschmidt T (2000) Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts, Philos. Trans R Soc Lond B Biol Sci 355:1351–1359

    Article  CAS  Google Scholar 

  • Anderson B, Anderson JM (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593:427–440

    Article  PubMed  Google Scholar 

  • Armbruster U, Labs M, Pribil M, Viola S, Xu W, Scharfenberg M, Hertle AP, Rojahn U, Jensen PE, Rappaport F, Joliot P, Dörmann P, Wanner G, Leister D (2013) Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25:2661–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26

    Google Scholar 

  • Anderson JM, Horton P, Kim EH, Chow WS (2012) Towards elucidation of dynamic structural changes of plant thylakoid architecture, Philos. Trans R Soc Lond B Biol Sci 367:3515–3524

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA (2009) Structure-function, stability, and chemical modification of the cyanobacterial cytochrome b6f complex from Nostoc sp. PCC 7120. J Biol Chem 284:9861–9869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baniulis D, Hasan SS, Stofleth JT, Cramer WA (2013) Mechanism of enhanced superoxide production in the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 52:8975–8983

    Article  CAS  PubMed  Google Scholar 

  • Baniulis D, Hasan SS, Miliute I, Cramer WA (2016) Mechanisms of superoxide generation and signaling in cytochrome bc complexes. In: Cramer W, Kallas T (eds) Cytochrome complexes: evolution, structures, energy transduction, and signaling. Springer, Dordrecht, pp 397–417

    Google Scholar 

  • Benkov MA, Suslichenko IS, Trubitsin BV, Tikhonov AN (2023) Effects of plant acclimation on electron transport in chloroplast membranes of Cucumis sativus and Cucumis melo, Biochemistry (Moscow). Supplement Series a: Membrane and Cell Biology 17:92–105

    CAS  Google Scholar 

  • Barragan AM, Crofts AR, Schulten K, Solov’yov IA (2015) Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex. J Phys Chem B 119:433–447

    Article  CAS  PubMed  Google Scholar 

  • Barragan AM, Schulten K, Solov’yov IA (2016) Mechanism of the primary charge transfer reaction in the cytochrome bc1 complex. J Phys Chem B 120:11369–11380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Bendall DS, Manasse RS (1995) Cyclic phosphorylation and electron transport. Biochim Biophys Acta 1229:23–38

    Article  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075

    Article  CAS  PubMed  Google Scholar 

  • Bhaduri S, Zhang H, Erramilli S, Cramer WA (2019) Structural and functional contributions of lipids to the stability and activity of the photosynthetic cytochrome b6f lipoprotein complex. J Biol Chem 294:17758–17767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmick A, Hussein R, Bogacz I et al (2023) Structural evidence for intermediates during O2 formation in photosystem II. Nature. https://doi.org/10.1038/s41586-023-06038-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenfeld LA, Tikhonov AN (1994) Biophysical Thermodynamics of intracellular processes. molecular machines of the living cell. Springer, New York

    Book  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Boyer PD (1997) The ATP synthase: a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  • Brandt U (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer. FEBS Lett 387:1–6

    Article  CAS  PubMed  Google Scholar 

  • Breyton C (2000) Conformational changes in the cytochrome b6f complex induced by inhibitor binding. J Biol Chem 275:13195–13201

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Bujnowicz Ł, Sarewicz M, Borek A, Kuleta P, Osyczka A (2019) Suppression of superoxide production by a spin-spin coupling between semiquinone and the Rieske cluster in Cytochrome bc1. FEBS Lett 593:3–12

    Article  CAS  PubMed  Google Scholar 

  • Buchert F, Mosebach L, Gäbelein P, Hippler M (2020) PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem J 477:1631–1650

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11:46–55

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci USA 104:7887–7892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RD, Hind G (1983) Spectrally distinct cytochrome b-563 components in a chloroplast cytochrome b-f complex: interaction with a hydroxyquinoline N-oxide. Proc Natl Acad Sci USA 80:6249–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo M, Suorsa M, Suorsa RF, Ferrari R, Tadini L, Barbato R, Pesaresi P (2016) Photosynthesis control: an underrated short-term regulatory mechanism essential for plant viability. Plant Signal Behav 11:e1165382

    Article  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Transmembrane traffic in the cytochrome b6f complex. Annu Rev Biochem 75:769–790

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Hasan SS (2016) Structure-function of the cytochrome b6f lipoprotein complex. In: Cramer WA, Kallas T (eds) Cytochrome complexes: evolution, structures, energy transduction, and signaling. Springer, Dordrecht, pp 177–207

    Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochim Biophys Acta 1807:788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR (2004a) The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol 66:689–733

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR (2004b) Proton-coupled electron transfer at the Qo-site of the bc1 complex controls the rate of ubihydroquinone oxidation. Biochim Biophys Acta 1655:77–92

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR (2004c) The Q-cycle: a personal perspective. Photosynth Res 80:223–243

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR (2021) The modified Q-cycle: a look back at its development and forward to a functional mode. Biochim Biophys Acta 1862:148417

    Article  CAS  Google Scholar 

  • Crofts AR, Meinhardt SW, Jones KR, Snozzi M (1983) The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: a modified Q-cycle mechanism. Biochim Biophys Acta 723:202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Guergova-Kuras M, Kuras R, Ugulava N, Li J, Hong S (2000) Proton-coupled electron transfer at the Qo site: what type of mechanism can account for the high activation barrier? Biochim Biophys Acta 1459:456–466

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Holland JT, Victoria D, Kolling DRJ, Dikanov SA, Gilbreth R, Lhee S, Kuras R, Kuras MG (2008) The Q cycle reviewed: how well does a monomeric mechanism of the bc1 complex account for the function of a dimeric complex? Biochim Biophys Acta 1777:1001–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Hong S, Wilson C, Burto R, Victoria D, Harrison C, Shulten K (2013) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Biochim Biophys Acta 1827:1362–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR, Rose SW, Burton RL, Desi AV, Kenis PJA, Dikanov SA (2017) The Q-cycle mechanism of the bc1 complex: a biologist’s perspective on atomic studies. J Phys Chem 121:3701–3717

    Article  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  CAS  PubMed  Google Scholar 

  • De Vitry C, Ouyang Y, Finazzi G, Wollman F-A, Kallas T (2004) The chloroplast Rieske iron–sulfur protein: at the crossroad of electron transport and signal transduction. J Biol Chem 279:44621–44627

    Article  PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast ̀ protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Dumas L, Chazaux M, Peltier G, Johnson X, Alric J (2016) Cytochrome b6f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow. Photosynth Res 129:307–320

    Article  CAS  PubMed  Google Scholar 

  • Dumas L, Zito F, Blangy S, Auroy P, Johnson X, Peltier G, Alric J (2017) A stromal region of cytochrome b6f subunit IV is involved in the activation of the Stt7 kinase in Chlamydomonas. Proc Natl Acad Sci USA 114:12063–12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. University of California Press, Berkeley

    Google Scholar 

  • Fernández AP, Strand A (2008) Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr Opin Plant Biol 11:509–513

    Article  PubMed  Google Scholar 

  • Finazzi G, Zito F, Barbagallo RP, Wollman F-A (2001) Contrasted effects of inhibitors of cytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation. J Biol Chem 276:9770–9774

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G (2002) Redox-coupled proton pumping activity in cytochrome b6f, as evidenced by the pH dependence of electron transfer in whole cells of Chlamydomonas reinhardtii. Biochemistry 41:7475–7482

    Article  CAS  PubMed  Google Scholar 

  • Flannery SE, Hepworth C, Wood WHJ, Pastorelli F, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP (2021) Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis. Plant J 105:223–244

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Frolov AE, Tikhonov AN (2009) The oxidation of plastoquinol by a cytochrome b6f complex: a density functional theory study. Russian J Phys Chem A 83:506–508

    Article  CAS  Google Scholar 

  • Furbacher PN, Girvin ME, Cramer WA (1989) On the question of interheme electron transfer in the chloroplast cytochrome b6 in situ. Biochemistry 28:8990–8998

    Article  CAS  PubMed  Google Scholar 

  • Gross EL (1993) Plastocyanin: structure and function. Photosynth Res 37:103–116

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Grodzinski B, Han J, Marie T, Zhang Y-J, Song YC, Sun Y (2022) Granal thylakoid structure and function: explaining an enduring mystery of higher plants. New Phytol 236:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haehnel W (1976) The reduction kinetics chlorophyll aI as indicator for proton uptake between the light reactions in chloroplasts. Biochim Biophys Acta 440:506–521

    Article  CAS  PubMed  Google Scholar 

  • Haehnel W, Propper A, Krause H (1980) Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim Biophys Acta 593:384–399

    Article  CAS  PubMed  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free Radicals in biology and medicine, 5th edn. Oxford University, Oxford

    Google Scholar 

  • Harbinson J, Hedley CL (1989) The kinetics of P-700+ reduction in leaves: a novel in situ probe of thylakoid functioning. Plant, Cell and Environ 12:357–369

    Article  CAS  Google Scholar 

  • Hasan SS, Cramer WA (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys Chem Chem Phys 14:13853–13860

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Cramer WA (2014) Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 22:1008–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Yamashita E, Cramer WA (2013a) Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. Biochim Biophys Acta 1827:1295–1308

    Article  CAS  PubMed Central  Google Scholar 

  • Hasan SS, Stofleth JY, Yamashita E, Cramer WA (2013b) Light-induced conformational changes within the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 52:2649–2654

    Article  CAS  PubMed  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013c) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci USA 110:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Proctor EA, Yamashita E, Dokholyan NV, Cramer WA (2014) Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal. Biophys J 107:1620–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepworth C, Wood WHJ, Emrich-Mills TZ, Proctor MS, Casson S, Johnson MP (2021) Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I. Nat Plants 7:87–98

    Article  CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Article  CAS  PubMed  Google Scholar 

  • Höhner R, Pribil M, Herbstová M, Lopez LS, Kunz H-H, Li M, Wood M, Svoboda M, Puthiyaveetil S, Leister L, Kirchhoff H (2020) Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants. Proc Natl Acad Sci USA 117:15354–15362

    Article  PubMed  PubMed Central  Google Scholar 

  • Hope AB, Valente P, Matthews DB (1994) Effects of pH on the kinetics of redox reactions in and around the cytochrome bf complex in an isolated system. Photosynyh Res 42:111–120

    Article  CAS  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    Article  CAS  PubMed  Google Scholar 

  • Hsueh K-L, Westler WM, Markley JL (2010) NMR investigations of the Rieske protein from Thermus thermophilus support a coupled proton and electron transfer mechanism. J Am Chem Soc 132:7908–7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurt E, Hauska G (1982) Identification of the polypeptides in the cytochrome B6/f complex from spinach chloroplasts with redox-center-carrying subunits. J Bioenerg Biomembr 14:405–424

    Article  CAS  PubMed  Google Scholar 

  • Hurt EC, Hauska G (1983) Cytochrome B6 from isolated cytochrome B6f complexes. Evidence for two spectral forms with different midpoint potentials. FEBS Lett 153:413–419

    Article  CAS  Google Scholar 

  • Husen P, Solov’yov IA (2016) Spontaneous binding of molecular oxygen at the Qo-site of the bc1 complex could stimulate superoxide formation. J Am Chem Soc 138:12150–12158

    Article  CAS  PubMed  Google Scholar 

  • Ivanov BN, Borisova-Mubarakshina MM, Kozuleva MA (2018) Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide. Funct Plant Biol 45:102–110

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Iwaki M, Yakovlev G, Hirst J, Osyczka A, Dutton PL, Marshall D, Rich P (2005) Direct observation of redox-linked histidine bc1 complex by ATR-FTIR spectroscopy. Biochemistry 44:4230–4237

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Graf M, Munekage Y, Shikanai T (2002) Single point mutation in the Rieske iron–sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. FEBS Lett 519:99–102

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (1988) The low-potential electron-transfer chain in the cytochrome b6f complex. Biochim Biophys Acta 933:319–333

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JE, Berry JA (2021) The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynth Res 148:101–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge W, Nelson N (2015) ATP synthase. Annu Rev Biochem 83:631–657

    Article  Google Scholar 

  • Johnson MP, Vasilev C, Olsen JD, Hunter CN (2014) Nanodomains of cytochrome b6f of photosystem II complexes in spinach grana thylakid membranes. Plant Cell 26:3051–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff H, Horstmann S, Weis E (2000) Control of the photosynthetic electron transport by PQ diffusion in microdomains in thylakoids of higher plants. Biochim Biophys Acta 1459:148–168

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Mukherjee U, Galla HJ (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 41:4872–4882

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Hall C, Wood M, Herbstová M, Tsabari O, Nevo R, Charuvi D, Shimoni E, Reich Z (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci USA 108:20248–20253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff H, Li M, Puthiyaveetil S (2017) Sublocalization of cytochrome b6f complexes in photosynthetic membranes. Trends Plant Sci 22:574–582

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Crofts AR (1993) The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol. Biochim Biophys Acta 1183:72–84

    Article  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Kurreck J, Schodel R, Renger G (2000) Investigation of the plastoquinone pool size and fluorescence quenching in thylakoid membranes and photosystem II (PS II) membrane fragments. Photosynth Res 63:171–182

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Oja V, Eichelmann H (2016) Kinetics of plastoquinol oxidation by the Q-cycle in leaves. Biochim Biophys Acta 1857:819–830

    Article  CAS  PubMed  Google Scholar 

  • Laughlin TG, Bayne AN, Trempe J-F, Savage DF, Davies KM (2019) Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature 566:411–414

    Article  PubMed  Google Scholar 

  • Laughlin TG, Savage DF, Davies KM (2020) Recent advances on the structure and function of NDH-1: The complex I of oxygenic photosynthesis. Biochim Biophys Acta 1861:148254

    Article  CAS  Google Scholar 

  • Lazar D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    CAS  PubMed  Google Scholar 

  • Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signaling pathways. Photosynth Res 106:33–46

    Article  CAS  PubMed  Google Scholar 

  • Lennartz K, Plucken H, Seidler A, Westhoff P, Bechtold N, Meierhoff K (2001) HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b6f complex in Arabidopsis. Plant Cell 13:2539–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lhee S, Kolling DRJ, Nair SK, Dukatov SA, Crofts AR (2010) Modifications of protein environment of the [2Fe-2S] cluster of the bc1 complex: effects on the biophysical properties of the Rieske iron–sulfur protein and on the kinetics of the complex. J Biol Chem 285:9233–9248

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lin I-J, Chen Y, Fee JA, Song J, Westler WM, Markley JL (2006) Rieske protein from Thermus thermophilus: 15N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential. J Am Chem Soc 128:10672–10673

    Article  CAS  PubMed  Google Scholar 

  • Link TA (1997) The role of the “Rieske” iron sulfur protein in the hydroquinone oxidation (Qp) site of the cytochrome bc1 complex: the “proton-gated affinity change” mechanism. FEBS Lett 412:257–264

    Article  CAS  PubMed  Google Scholar 

  • Link TA (1999) The structures of Rieske and Rieske-type proteins. Adv Inorg Chem 47:83–157

    Article  CAS  Google Scholar 

  • Malone LA, Qian P, Mayneord GE, Hitchcock A, Farmer DA, Thompson RF, Swainsbury DJK, Ranson NA, Hunter CN, Johnson MP (2019) Cryo-EM Structure of the spinach cytochrome b6f complex at 3.6 Å resolution. Nature 575:535–539

    Article  CAS  PubMed  Google Scholar 

  • Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP (2021) Cytochrome b6f – Orchestrator of photosynthetic electron transfer. Biochim Biophis Acta 1862:148380

    Article  CAS  Google Scholar 

  • Mamedov M, Govindjee G, Nadtochenko V, Semenov AYu (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Mayer JM, Rhile IJ (2004) Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs. concerted pathways. Biochim Biophys Acta 1655:51–58

    Article  CAS  PubMed  Google Scholar 

  • McCauley SW, Melis A (1986) Quantification of plastoquinone photoreduction in spinach chloroplasts. Photosynth Res 8:3–16

    Article  CAS  PubMed  Google Scholar 

  • Mielecki J, Gawroński P, Karpiński S (2020) Retrograde signaling: understanding the communication between organelles. Int J Mol Sci 21:6173. https://doi.org/10.3390/ijms21176173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1969) Chemiosmotic coupling and energy transduction. Theor Exp Biophys 2:159–216

    CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: a general formulation. FEBS Lett 59:137–139

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta 1807:1507–1538

    Article  CAS  PubMed  Google Scholar 

  • Moser CC, Page CC, Chen X, Dutton PL (1997) Biological electron tunnelling through native protein media. J Biol Inorg Chem 2:393–398

    Article  CAS  Google Scholar 

  • Motohashi K, Hisabori T (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 281:35039–35047

    Article  CAS  PubMed  Google Scholar 

  • Mubarakshina M, Khorobrykh S, Ivanov B (2006) Oxygen reduction in chloroplast thylakoids results in production of hydrogen peroxide inside the membrane. Biochim Biophys Acta 1757:1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Munekage YN, Genty B, Peltier G (2008) Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiol 49:1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY (2010) Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes. Biochim Biophys Acta 1797:1858–1868

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawrocki WJ, Bailleul B, Picot D, Cardol P, Rappaport F, Wollman F-A, Joliot P (2019) The mechanism of cyclic electron flow. Biochim Biophys Acta 1860:433–438

    Article  CAS  Google Scholar 

  • Nakamura A, Suzawa T, Kato Y, Watanabe T (2011) Species dependence of the redox potential of the primary electron donor P700 in photosystem I of oxygenic photosynthetic organisms revealed by spectoelectrochemistry. Plant Cell Physiol 52:815–823

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Ness J, Naurin S, Effinger K, Stadnytskyi V, Ibrahim IM, Puthiyaveetil S, Cramer WA (2019) Structure-based control of the rate limitation of photosynthetic electron transport. FEBS Lett 593:2103–2111

    Article  CAS  PubMed  Google Scholar 

  • Nishio JN, Whitmarsh J (1993) Dissipation of the proton electrochemical potential in intact chloroplasts: II. The pH gradient monitored by cytochrome f reduction kinetics. Plant Physiol 101:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitscke W, Joliot P, Leibl U, Rutherford AW, Hauska G, Müller A, Riedel A (1992) The pH dependence of the redox midpoint of the 2Fe2S cluster from cytochrome b6f complex (the ‘Rieske centre’). Biochim Biophys Acta 1102:266–268

    Article  Google Scholar 

  • Noodleman L, Peng CY, Case DA, Mouesca J-M (1995) Orbital interactions, electron delocalization, and spin coupling in iron–sulfur clusters. Coor Chem Rev 144:199–244

    Article  CAS  Google Scholar 

  • Noodleman L, Lovell T, Liu T, Himo F, Torres RA (2002) Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase. Curr Opin Chem Biol 6:259–273

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Moser CC, Daldal F, Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427:607–612

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Moser CC, Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30:176–182

    Article  CAS  PubMed  Google Scholar 

  • Osyczka A, Zhang H, Mathe C, Rich PR, Moser CC et al (2006) Role of the PEWY glutamate in hydroquinone-quinone oxidation-reduction catalysis in the Qo site of cytochrome bc1. Biochemistry 45:10492–10503

    Article  CAS  PubMed  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  • Palmer G (1985) The electron paramagnetic resonance of metalloproteins. Biochem Soc Trans 13:548–560

    Article  CAS  PubMed  Google Scholar 

  • Pierre Y, Breyton C, Kramer D, Popot J-L (1995) Purification and characterization of the cytochrome b6f complex from Chlamydomonas reinhardtii. J Biol Chem 270:29342–29349

    Article  CAS  PubMed  Google Scholar 

  • Pietras R, Sarewicz M, Osyczka A (2016) Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo of cytochrome bc1 and their mechanistic implications. J R Soc Interface 13:20160133

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponamarev MV, Cramer WA (1998) Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of concerted reduction of cytochromes f and b. Biochemistry 37:17199–17208

    Article  CAS  PubMed  Google Scholar 

  • Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T (2013) Key role of water in proton transfer at the Qo-site of the cytochrome bc1 complex predicted by atomistic molecular dynamics simulations. Biochim Biophys Acta 1827:761–768

    Article  CAS  PubMed  Google Scholar 

  • Pralon T, Kessler F (2016) Plastoglobules: lipid droplets at the thylakoid membrane. In: Kirchhoff H (ed) Chloroplasts: current research and future trends. Caister Academic Press, Norfolk, pp 171–186

    Google Scholar 

  • Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. Environ Bot 65:1955–1972

    CAS  Google Scholar 

  • Pribil M, Sandoval-Ibáñez O, Xu W, Sharma A, Labs M, Liu Q, Galgenmüller C, Schneider T, Wessels M, Matsubara S, Jansson S, Wanner G, Leister D (2018) Fine-tuning of photosynthesis requires CURVATURE THYLAKOID1- mediated thylakoid plasticity. Plant Physiol 176:2351–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor MS, Malone LA, Farmer DA, Swainsbury DJK, Hawkings FR, Pastorelli F, Emrich-Mills TZ, Siebert CA, Hunter CN, Johnson MP, Hitchcock A (2022) Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory etP subunit. Biochemical J 479:1487–1503

    Article  CAS  Google Scholar 

  • Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN (2019) Three phases of energy-dependent induction of P+700 and Chl a fluorescence in Tradescantia fluminensis leaves. Photosynth Res 139:509–522

    Article  CAS  PubMed  Google Scholar 

  • Puthiyaveetil S, Kirchhoff H, Höhner R (2016) Structural and functional dynamics the thylakoid membrane system. In: Kirchhoff H (ed) Chloroplasts: current research and future trends. Caister Academic Press, Norfolk, pp 59–87

    Google Scholar 

  • Rees D, Young A, Noctor G, Britton G, Horton P (1989) Enhancement of the pH-dependent dissipation of excitation energy in spinach chloroplasts by light activation: correlation with the synthesis of zeaxanthin. FEBS Lett 256:85–90

    Article  CAS  Google Scholar 

  • Reece SY, Nocera DG (2009) Proton-coupled electron transfer in biology: results from synergetic studies in natural and model systems. Annu Rev Biochem 78:673–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich PR, Bendall DS (1980) The redox potentials of the B-type cytochromes of higher plant chloroplasts. Biochim Biophys Acta 591:153–161

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D, Lemeille S, Shapiguzov A, Samol I, Fucile G, Willig A, Goldschmidt-Clermont M (2012) Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos Trans R Soc B 367:3466–3474

    Article  CAS  Google Scholar 

  • Romanovsky YuM, Tikhonov AN (2010) Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor. Phys Usp 53:893–914

    Article  CAS  Google Scholar 

  • Rozak PR, Seiser RM, Wacholtz WF, Wise RR (2002) Rapid, reversible alterations in spinach thylakoid appression upon changes in light intensity. Plant Cell Environ 25:421–429

    Article  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP (2015) Visualizing the dynamic structure of the plant photosynthetic membrane. Nat Plants 3:15161

    Article  Google Scholar 

  • Ruuge EK, Tikhonov AN (2022) Electron paramagnetic resonance study of the regulatory mechanisms of light phases of photosynthesis in plants. Biophysics 67:406–412

    Article  CAS  Google Scholar 

  • Rumberg B, Reinwald E, Schroder H, Siggel U (1968) Correlation between electron flow, proton translocation and phosphorylation in chloroplasts. Naturwissenschaften 55:77–79

    Article  CAS  PubMed  Google Scholar 

  • Rumberg B, Siggel U (1969) pH changes in the inner phase of the thylakoids during photosynthesis. Naturwissenschaften 56:130–132

    Article  CAS  PubMed  Google Scholar 

  • Ryzhikov SB, Tikhonov AN (1988) Regulation of electron transfer in photosynthetic membranes of higher plants. Biophysics 33:642–646

    CAS  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97:14283–14288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoilova RI, Kolling D, Uzawa T, Iwasaki T, Crofts AR, Dikanov S (2002) The interaction of the Rieske iron–sulfur protein with occupants of the Qo-site of the bc1 complex, probed by 1D and 2D electron spin echo envelope modulation. J Biol Chem 277:4605–4608

    Article  CAS  PubMed  Google Scholar 

  • Sarewicz M, Dutka M, Pintscher S, Osyczka A (2013) Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzes by cytochrome bc1. Biochemistry 52:6388–6395

    Article  CAS  PubMed  Google Scholar 

  • Sarewicz M, Bujnowicz Ł, Osyczka A (2018) Generation of semiquinone-[2Fe-2S]+ spin-coupled center at the Qo site of cytochrome bc1 in redox-poised, illuminated photosynthetic membranes from Rhodobacter capsulatus. Biochim Biophys Acta 1859:145–153

    Article  CAS  Google Scholar 

  • Sarewicz M, Bujnowicz Ł, Bhaduri S, Singh SK, Cramer WA, Osyczka A (2017) Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc Natl Acad Sci USA 114:1323–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A (2021) Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes. Chem Rev 121:2020–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarewicz M, Szwalec M, Pintscher S, Indyka P, Rawski M, Pietras R, Mielecki B, Koziej Ł, Jaciuk M, Glatt S, Osyczka A (2023) High-resolution cryo-EM structures of plant cytochrome b6f at work. Sci Adv 9:1–12

    Article  Google Scholar 

  • Schöttler MA, Tóth SZ, Boulouis A, Kahlau S (2015) Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J Exp Bot 66:2373–2400

    Article  PubMed  Google Scholar 

  • Schönknecht G, Neimanis S, Katona E, Gerst U, Heber U (1995) Relationship between photosynthetic electron transport and pH gradient across the thylakoid membrane in intact leaves. Proc Natl Acad Sci USA 92:12185–12189

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2016) Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim Biophys Acta 1857:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Katsuda N, Katsurada T, Mitani M, Yoshioka Y (2008) Mechanism on two-electron oxidation of ubiquinol at the Qp site in Cytochrome bc1 complex: B3LYP study with broken symmetry. J Phys Chem 112:15116–15126

    Article  CAS  Google Scholar 

  • Schuller JM, Birrell JA, Tanaka H, Konuma T, Wulfhorst H, Cox N, Schuller SK, Thiemann J, Lubitz W, Sétif P, Ikegami T, Engel BDK, Nowaczyk MM (2019) Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363:257–260

    Article  CAS  PubMed  Google Scholar 

  • Siegbahn PEM, Blomberg MRA (1999) Density functional theory of biologically relevant metal centers. Annu Rev Phys Chem 50:221–249

    Article  CAS  PubMed  Google Scholar 

  • Siggel U, Renger G, Stiehl HH, Rumberg B (1972) Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim Biophys Acta 256:328–335

    Article  CAS  PubMed  Google Scholar 

  • Snyder CH, Gutierrez-Cirlos EB, Trumpower BL (2000) Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex. J Biol Chem 275:13535–13541

    Article  CAS  PubMed  Google Scholar 

  • Soriano GM, Ponamarev MV, Tae G-S, Cramer WA (1996) Effect of the interdomain basic region of cytochrome f on its redox reactions in vivo. Biochemistry 35:14590–14598

    Article  CAS  PubMed  Google Scholar 

  • Soriano GM, Guo L-W, de Vitry C, Kallas T, Cramer WA (2002) Electron transfer from the Rieske iron–sulfur protein (ISP) to cytochrome f in vitro. Is a guided trajectory of the ISP necessary for competent docking? J Biol Chem 277:41865–41871

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supramolecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    Article  CAS  PubMed  Google Scholar 

  • Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z Naturforsch B 24:1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Strand DD, Fisher N, Kramer DM (2016) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Kirchhoff H (ed) Chloroplasts: current research and future trends. Caister Academic Press, Norfolk, pp 89–100

    Google Scholar 

  • Strand DD, Fisher N, Kramer DM (2017) The higher plant plastid NAD(P)H dehydrogenase-like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. J Biol Chem 292:11850–11860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L, Picot D (2003) An atypical heam in the cytochrome b6f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Suslichenko IS, Tikhonov AN (2019) Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett 593:788–798

    Article  CAS  PubMed  Google Scholar 

  • Suslichenko IS, Trubitsin BV, Vershubskii AV, Tikhonov AN (2022) The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves. Plant Physiol Biochem 185:233–243

    Article  CAS  PubMed  Google Scholar 

  • Szwalec M, Bujnowicz Ł, Sarewicz M, Osyczka A (2022) Unexpected heme redox potential values implicate an uphill step in cytochrome b6f. J Phys Chem B 26:9771–97801

    Article  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2012) Energetic and regulatory role of proton potential in chloroplasts. Biochem Mosc 77:956–974

    Article  CAS  Google Scholar 

  • Tikhonov AN (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2018) The cytochrome b6f complex: biophysical aspects of its functioning in chloroplasts. In: Harris JR, Boekema EJ (eds) Membrane protein complexes: structure and function, subcellular biochemistry, vol 87. Springer, Singapore, pp 287–328

    Chapter  Google Scholar 

  • Tikhonov AN, Vershubskii AV (2014) Computer modeling of electron and proton transport in chloroplasts. BioSystems 121:1–21

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN, Vershubskii AV (2017) Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts. Photosynth Res 133:103–114

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK, Blumenfeld LA (1981) Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH. Biochim Biophys Acta 637:321–333

    Article  CAS  Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK (1984) Electron transport control in chloroplasts. Effects of magnesium ions on the electron flow between two photosystems. Photobiochem Photobiophys 8:261–269

    CAS  Google Scholar 

  • Tremmel IG, Kirchhoff H, Weis E, Farquhar GD (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Biophys Acta 1603:97–109

    Article  Google Scholar 

  • Ustynyuk LY, Trubitsin BV, Tikhonov AN (2018) DFT modeling of the first step of plastoquinol oxidation by the iron-sulfur protein of the cytochrome b6f complex. Mendeleev Commun 28:170–172

    Article  CAS  Google Scholar 

  • Ustynyuk LYu, Tikhonov AN (2018) The cytochrome b6f complex: DFT modeling of the first step of plastoquinol oxidation by the iron-sulfur protein. J Organomet Chem 867:290–299

    Article  CAS  Google Scholar 

  • Ustynyuk LYu, Tikhonov AN (2022) Plastoquinol oxidation: rate-limiting stage in the electron transport chain of chloroplasts. Biochem Mosc 87:1084–1097

    Article  CAS  Google Scholar 

  • Vallon O, Bulte L, Dainese P, Olive J, Bassi R, Wollman F-A (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. Proc Natl Acad Sci USA 88:8262–8266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vener AV, Kan PJM, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vener AV, Ohad I, Andersson B (1998) Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr Opin Plant Biol 1:217–223

    Article  CAS  PubMed  Google Scholar 

  • Vershubskii AV, Trubitsin BV, Priklonskii VI, Tikhonov AN (2017) Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. Biochim Biophys Acta 1859:388–401

    Article  CAS  Google Scholar 

  • Victoria D, Burton R, Crofts AR (2013) Role of the –PEWY-glutamate in catalysis at the Qo-site of the Cyt bc1 complex. Biochim Biophys Acta 1827:365–386

    Article  CAS  PubMed  Google Scholar 

  • Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41:1–16

    Article  CAS  PubMed  Google Scholar 

  • West KR, Wiskich JT (1968) Photosynthetic control by isolated pea chloroplasts. Biochem J 109:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikström MKF, Berden JA (1972) Oxidoreduction of cytochrome b in the presence of antimycin. Biochim Biophys Acta 283:403–420

    Article  PubMed  Google Scholar 

  • Williams RJP (1988) Proton circuits in biological energy interconversions. Ann Rev Biophys Chem 17:71–97

    Article  CAS  Google Scholar 

  • Wood WHJ, MacGregor-Chatwin C, Barnett SFH, Mayneord GE, Huang X, Hobbs JK, Hunter CN, Johnson MP (2018) Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat Plants 4:116–127

    Article  CAS  PubMed  Google Scholar 

  • Wood WHJ, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. Plant Physiol 188:2152–2166

    Article  Google Scholar 

  • Yadav KNS, Semchonok DA, Nosek L, Kouřil R, Fucile G, Boekema EJ, Eichacker LA (2017) Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim Biophys Acta 1858:12–20

    Article  CAS  Google Scholar 

  • Yamashita E, Zhang H, Cramer WA (2007) Structure of the cytochrome b6f complex: Quinone analogue inhibitors as ligands of heme cn. J Mol Biol 370:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamory W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Ann Rev Plant Biology 67:81–106

    Article  Google Scholar 

  • Yan J, Cramer WA (2003) Functional insensitivity of the cytochrome b6f complex to structure changes in the hinge region of the Rieske iron–sulfur protein. J Biol Chem 278:20925–20933

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung L-W, Crofts AR, Berry EA, Kim S-H (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684

    Article  CAS  PubMed  Google Scholar 

  • Zhao L-S, Huokko T, Wilson S, Simpson DM, Wang Q, Ruban AV, Mullineaux Y-Z, Zhang CW, Liu L-N (2020) Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat Plants 6:869–882

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Egawa T, Yeh S-R, Yu L, Yu C-A (2007) Simultaneous reduction of iron–sulfur protein and cytochrome bL during ubiquinol oxidation in cytochrome bc1 complex. Proc Natl Acad Sci USA 104:4864–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zito F, Finazzi G, Joliot P, Wollman FA (1998) Glu78, from the conserved PEWY sequence of subunit IV, has a key function in the cytochrome b6f turnover. Biochemistry 37:10395–10403

    Article  CAS  PubMed  Google Scholar 

  • Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman F-A (1999) The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J 18:2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu Y, Manon M-J, Couture MM-J, Kolling DRJ, Crofts AR, Eltis LD, Fee JA, Hirst J (2003) The reduction potentials of Rieske clusters: the importance of the coupling between oxidation state and histidine protonation state. Biochemistry 42:12400–12408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Vladimir Shuvalov, an outstanding scientist who made fundamental contributions to elucidation of the mechanisms of electron transfer in photosynthetic systems. I would like to express my special acknowledgment to Dr. L.Yu. Ustynyuk for her decisive contribution to DFT modeling of a bifurcated oxidation of plastoquinol by the Cytb6f complex. I am deeply grateful to Drs. E.K. Ruuge, G.B. Khomutov, B.V. Trubitsin, and A.V. Vershubskii for fruitful collaboration in our earlier experimental and theoretical studies of regulatory processes in chloroplasts. I also thank the Reviewers for usefull and constructive comments.

Funding

This work was partly supported by the Russian Science Foundation (Grant 21-74-20047).

Author information

Authors and Affiliations

Authors

Contributions

ANT: design, planning the work, data processing, writing of the manuscript.

Corresponding author

Correspondence to Alexander N. Tikhonov.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.N. The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynth Res 159, 203–227 (2024). https://doi.org/10.1007/s11120-023-01034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01034-w

Keywords

Navigation