Skip to main content

Advertisement

Log in

Quantum yield measurements of light-induced H2 generation in a photosystem I–[FeFe]-H2ase nanoconstruct

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSIC13G–1,8-octanedithiol–[FeFe]-H2aseC97G (PSI–H2ase) nanoconstruct. The theoretical quantum yield for the PSI–H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI–H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10–0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7–10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSIC13G–1,8-octanedithiol–PSIC13G (PSI–PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI–PSI conjugates as well as in producing PSI–H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI–H2ase nanoconstructs from the unproductive PSI–PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI–H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonkine ML, Maes EM, Czernuszewicz RS, Breitenstein C, Bill E, Falzone CJ, Balasubramanian R, Lubner C, Bryant DA, Golbeck JH (2007) Chemical rescue of a site-modified ligand to a [4Fe–4S] cluster in PsaC, a bacterial-like dicluster ferredoxin bound to photosystem I. Biochim Biophys Acta 1767(6):712–724

    Article  CAS  PubMed  Google Scholar 

  • Díaz A, Navarro F, Hervás M, Navarro JA, Chávez S, Florencio FJ, De la Rosa MA (1994) Cloning and correct expression in E. coli of the petJ gene encoding cytochrome c6 from Synechocystis 6803. FEBS Lett 347(2–3):173–177

    Article  PubMed  Google Scholar 

  • Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9(1):1–24

    Article  CAS  Google Scholar 

  • Evans J (1987) The dependence of quantum yield on wavelength and growth irradiance. Funct Plant Biol 14(1):69–79

    Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107(10):4273–4303

    Article  CAS  PubMed  Google Scholar 

  • Frey M (2002) Hydrogenases: hydrogen-activating enzymes. ChemBioChem 3(2–3):153–160

    Article  CAS  PubMed  Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90(5):1642–1646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golbeck JH, Parrett KG, Mehari T, Jones KL, Brand JJ (1988) Isolation of the intact photosystem-I reaction center core containing P700 and iron-sulfur center Fx. FEBS Lett 228(2):268–272

    Article  CAS  Google Scholar 

  • Grimme RA, Lubner CE, Bryant DA, Golbeck JH (2008) Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. J Am Chem Soc 130(20):6308–6309

  • Grimme RA, Lubner CE, Golbeck JH (2009) Maximizing H2 production in photosystem I/dithiol molecular wire/platinum nanoparticle bioconjugates. Dalton Trans 45:10106–10113

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90(3):1029–1034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heathcote P, Williams-Smith DL, Sihra CK, Evans MCW (1978) The role of the membrane-bound iron-sulphur centres A and B in the photosystem I reaction centre of spinach chloroplasts. Biochim Biophys Acta 503(2):333–342

  • Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell Online 24(5):1921–1935

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I a 2.5 A resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192(2):261–268

    Article  CAS  Google Scholar 

  • Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  PubMed  Google Scholar 

  • Li N, Warren PV, Golbeck JH, Frank G, Zuber H, Bryant DA (1991a) Polypeptide composition of the photosystem I complex and the photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059(2):215–225

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhao JD, Warren PV, Warden JT, Bryant DA, Golbeck JH (1991b) PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30(31):7863–7872

    Article  CAS  PubMed  Google Scholar 

  • Lubner CE, Grimme R, Bryant DA, Golbeck JH (2009) Wiring photosystem I for direct solar hydrogen production. Biochemistry 49(3):404–414

    Article  Google Scholar 

  • Lubner CE, Knorzer P, Silva PJN, Vincent KA, Happe T, Bryant DA, Golbeck JH (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49(48):10264–10266

    Article  CAS  PubMed  Google Scholar 

  • Lubner CE, Applegate AM, Knorzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011a) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci USA 108(52):20988–20991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lubner CE, Heinnickel M, Bryant DA, Golbeck JH (2011b) Wiring photosystem I for electron transfer to a tethered redox dye. Energy Environ Sci 4(7):2428–2434

    Article  CAS  Google Scholar 

  • Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295

    Article  CAS  PubMed  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811(3):265–322

  • Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  • Parrett KG, Mehari T, Warren PG, Golbeck JH (1989) Purification and properties of the intact P-700 and Fx-containing photosystem I core protein. Biochim Biophys Acta 973(2):324–332

    Article  CAS  PubMed  Google Scholar 

  • Vassiliev IR, Jung YS, Mamedov MD, Semenov A, Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys J 72(1):301–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao JD, Warren PV, Li N, Bryant DA, Golbeck JH (1990) Reconstitution of electron transport in photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett 276(1–2):175–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract DE-FG-05-05-ER46222 (JHG). Further financial support (T.H.) by the EU-SolarH2 program, the BMBF (Bio-H2), and the VW foundation (LigH2t) is gratefully acknowledged. The authors thank Dr. Michael Hambourger for discussions and advice on measuring quantum yields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Golbeck.

Additional information

Guest Editor: Richard Cogdell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Applegate, A.M., Lubner, C.E., Knörzer, P. et al. Quantum yield measurements of light-induced H2 generation in a photosystem I–[FeFe]-H2ase nanoconstruct. Photosynth Res 127, 5–11 (2016). https://doi.org/10.1007/s11120-014-0064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0064-y

Keywords

Navigation