Skip to main content
Log in

Temperature shift effect on the Chlorobaculum tepidum chlorosomes

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chlorobaculum [Cba.] tepidum is known to grow optimally at 48–52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV–visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-173 versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-173 (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BChl c (or BChl a):

Bacteriochlorophyll c (or a)

BPhe c :

Bacteriopheophytin c

Cba. tepidum :

Chlorobaculumn tepidum

Cfl. aurantiacus :

Chloroflexus aurantiacus

CD:

Circular dichroism

DTT:

Dithiothreitol

GSBs:

Green sulfur bacteria

LC/MS:

Liquid chromatography/mass spectrometry

References

  • Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 195–217

    Google Scholar 

  • Blankenship RE, Cheng P, Causgrove TP, Brune DC, Wang S-H, Choh JU, Wang J (1993) Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol 57:103–107

    Article  PubMed  CAS  Google Scholar 

  • Borrego CM, Gerola PD, Miller M, Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166

    Article  CAS  Google Scholar 

  • Caple MB, Chow H, Strouse CE (1978) Photosynthetic pigments of green sulfur bacteria. The esterifying alcohols of bacteriochlorophylls c from Chlorobium limicola. J Biol Chem 253:6730–6737

    PubMed  CAS  Google Scholar 

  • Di Valentin M, Malorni D, Maniero AL, Agostini G, Giacometti G, Vianelli A, Vannini C, Cattaneo AG, Brunel LC, Carbonera D (2002) Structural investigation of oxidized chlorosomes from green bacteria using multifrequency electron paramagnetic resonance up to 330 GHz. Photosynth Res 71:33–44

    Article  PubMed  Google Scholar 

  • Didraga C, Klugkist JA, Knoester J (2002) Optical properties of helical cylindrical molecular aggregates: the homogeneous limit. J Phys Chem B 106:11474–11486

    Article  CAS  Google Scholar 

  • Feng X, Tang KH, Blankenship RE, Tang YJ (2010) Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. J Biol Chem 285:39544–39550

    Article  PubMed  CAS  Google Scholar 

  • Figaard N-U, Chew AGM, Maresca JA, Bryant DA (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls. Springer, Berlin Heidelberg New York, pp 201–221

    Chapter  Google Scholar 

  • Frese R, Oberheide U, van Stokkum I, van Grondelle R, Foidl M, Oelze J, van Amerongen H (1997) The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein. Photosynth Res 54:115–126

    Article  CAS  Google Scholar 

  • Frigaard NU, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Bryant DA (2006) Chlorosomes: antenna organelles in photosynthetic green bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes. Springer, Berlin Heidelberg New York, pp 79–114

    Chapter  Google Scholar 

  • Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349

    Article  CAS  Google Scholar 

  • Frigaard N-U, Matsuura K, Hirota M, Miller M, Cox RP (1998) Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria. Photosynth Res 58:81–90

    Article  CAS  Google Scholar 

  • Furumaki S, Vacha F, Habuchi S, Tsukatani Y, Bryant DA, Vacha M (2011) Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. J Am Chem Soc 133:6703–6710

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJ (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530

    Article  PubMed  CAS  Google Scholar 

  • Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146

    Article  PubMed  CAS  Google Scholar 

  • Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c C-8(2) and C-12(1) methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  PubMed  Google Scholar 

  • Gottstein J, Scheer H (1983) Long-wavelength-absorbing forms of bacteriochlorophyll a in solutions of Triton X-100. Proc Natl Acad Sci USA 80:2231–2234

    Article  PubMed  CAS  Google Scholar 

  • Griebenow K, Holzwarth AR, van Mourik F, van Grondelle R (1991) Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl. Biochim Biophys Acta 1058:194–202

    Article  CAS  Google Scholar 

  • Hanada S, Pierson BK (2006) The family Chloroflexaceae. The prokaryotes 3rd edn., vol 7, pp 815–842. Springer, Berlin Heidelberg New York

  • Jaenicke R, Bohm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8:738–748

    Article  PubMed  CAS  Google Scholar 

  • Jochum T, Reddy CM, Eichhofer A, Buth G, Szmytkowski J, Kalt H, Moss D, Balaban TS (2008) The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d, or e mimics. Proc Natl Acad Sci USA 105:12736–12741

    Article  PubMed  CAS  Google Scholar 

  • Kosmulski M (2009) Surface charging and points of zero charge. CRC Press, Boca Raton

    Book  Google Scholar 

  • Laing LH, Shen CM, Du SX, Liu WM, Xie XC, Gao HJ (2004) Increase in thermal stability induced by organic coating on nanoparticles. Phys Rev B 70:205419

    Article  Google Scholar 

  • Larsen KL, Cox RP, Miller M (1994) Effects of illumination intensity on bacteriochlorophyll c homolog distribution in Chloroflexus aurantiacus grown under controlled conditions. Photosynth Res 41:151–156

    Article  CAS  Google Scholar 

  • Larsen KL, Miller M, Cox RP (1995) Incorporation of exogenons long-chain alcohols into bacteriochlorophyll c homologs by Chloroflexus aurantiacus. Arch Microbiol 163:119–123

    Article  CAS  Google Scholar 

  • Lehmann RP, Brunisholz RA, Zuber H (1994) Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7-kDa polypeptide. FEBS Lett 342:319–324

    Article  PubMed  CAS  Google Scholar 

  • Linnanto JM, Korppi-Tommola JEI (2008) Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynth Res 96:227–245

    Article  PubMed  CAS  Google Scholar 

  • Lipps HJ (1980) In vitro aggregation of the gene-sized DNA molecules of the ciliate Stylonychia mytilus. Proc Natl Acad Sci USA 77:4104–4107

    Article  PubMed  CAS  Google Scholar 

  • Mills DR, Lee JM (1996) A simple, accurate method for determining wet and dry weight concentrations of plant cell suspension cultures using microcentrifuge tubes. Plant Cell Rep 15:634–636

    Article  CAS  Google Scholar 

  • Mizoguchi T, Yoshitomi T, Harada J, Tamiaki H (2011) Temperature- and time-dependent changes in the structure and composition of glycolipids during the growth of the green sulfur photosynthetic bacterium Chlorobaculum tepidum. Biochemistry 50:4504–4512

    Article  PubMed  CAS  Google Scholar 

  • Modesto-Lopez LB, Thimsen EJ, Collins AM, Blankenship RE, Biswas P (2010) Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy Environ Sci 3:216–222

    Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Chan LK, Modla S, Weber TS, Warner M, Czymmek KJ, Hanson TE (2009) Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability. Photosynth Res 99:11–21

    Article  PubMed  CAS  Google Scholar 

  • Morrison ID, Ross S (2002) Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience, New York

    Google Scholar 

  • Niedermeier G, Scheer H, Feick RG (1992) The functional role of protein in the organization of bacteriochlorophyll c in chlorosomes of Chloroflexus aurantiacus. Eur J Biochem/FEBS 204:685–692

    Article  CAS  Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus. J Bacteriol 174:5021–5026

    PubMed  CAS  Google Scholar 

  • Oelze J, Fuller RC (1983) Temperature dependence of growth and membrane-bound activities of Chloroflexus aurantiacus energy metabolism. J Bacteriol 155:90–96

    PubMed  CAS  Google Scholar 

  • Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 259–278

    Google Scholar 

  • Olson TL, van de Meene AM, Francis JN, Pierson BK, Blankenship RE (2007) Pigment analysis of “Candidatus Chlorothrix halophila”, a green filamentous anoxygenic phototrophic bacterium. J Bacteriol 189:4187–4195

    Article  PubMed  Google Scholar 

  • Oostergetel GT, van Amerongen H, Boekema EJ (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104:245–255

    Article  PubMed  CAS  Google Scholar 

  • Overmann J (2006) The family Chlorobiaceae. The prokaryotes, 3rd edn., vol 7, pp 359–378. Springer, Berlin Heidelberg New York

  • Persson S, Sonksen CP, Frigaard NU, Cox RP, Roepstorff P, Miller M (2000) Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry. Eur J Biochem/FEBS 267:450–456

    Article  CAS  Google Scholar 

  • Prokhorenko VI, Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120

    Article  PubMed  CAS  Google Scholar 

  • Prokhorenko VI, Steensgaard DB, Holzwarth AR (2003) Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Biophys J 85:3173–3186

    Article  PubMed  CAS  Google Scholar 

  • Psencik J, Ikonen TP, Laurinmaki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Psencik J, Arellano JB, Ikonen TP, Borrego CM, Laurinmaki PA, Butcher SJ, Serimaa RE, Tuma R (2006) Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. Biophys J 91:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Psencik J, Collins AM, Liljeroos L, Torkkeli M, Laurinmaki P, Ansink HM, Ikonen TP, Serimaa RE, Blankenship RE, Tuma R, Butcher SJ (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708

    Article  PubMed  CAS  Google Scholar 

  • Psencik J, Torkkeli M, Zupcanova A, Vacha F, Serimaa RE, Tuma R (2010) The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol. Photosynth Res 104:211–219

    Article  PubMed  CAS  Google Scholar 

  • Russell AE (1974) Effect of pH on thermal stability of collagen in the dispersed and aggregated states. Biochem J 139:277–280

    PubMed  CAS  Google Scholar 

  • Saga Y, Wazawa T, Mizoguchi T, Ishii Y, Yanagida T, Tamiaki H (2002) Spectral heterogeneity in single light-harvesting chlorosomes from green sulfur photosynthetic bacterium Chlorobium tepidum. Photochem Photobiol 75:433–436

    Article  PubMed  CAS  Google Scholar 

  • Saga Y, Akai S, Miyatake T, Tamiaki H (2006) Self-assembly of natural light-harvesting bacteriochlorophylls of green sulfur photosynthetic bacteria in silicate capsules as stable models of chlorosomes. Bioconjug Chem 17:988–994

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Tateishi S, Nakabayashi S, Itoh S, Tamiaki H (2010) Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Biochemistry 49:7504–7515

    Article  PubMed  CAS  Google Scholar 

  • Somsen OJ, van Grondelle R, van Amerongen H (1996) Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophys J 71:1934–1951

    Article  PubMed  CAS  Google Scholar 

  • Sprague SG, Staehelin LA, DiBartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1021–1031

    PubMed  CAS  Google Scholar 

  • Steensgaard DB, Cox RP, Miller M (1996) Manipulation of the bacteriochlorophyll c homolog distribution in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 48:385–393

    Article  CAS  Google Scholar 

  • Sun TX, Akhtar NJ, Liang JJ (1999) Thermodynamic stability of human lens recombinant alphaA- and alphaB-crystallins. J Biol Chem 274:34067–34071

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Blankenship RE (2010) Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 285:35848–35854

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Chang CH, Frey PA (2001) Electron transfer in the substrate-dependent suicide inactivation of lysine 5,6-aminomutase. Biochemistry 40:5190–5199

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Wen J, Li X, Blankenship RE (2009) Role of the AcsF protein in Chloroflexus aurantiacus. J Bacteriol 191:3580–3587

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Urban VS, Wen J, Xin Y, Blankenship RE (2010) SANS investigation of the photosynthetic machinery of Chloroflexus aurantiacus. Biophys J 99:2398–2407

    Article  PubMed  CAS  Google Scholar 

  • Tang KH, Zhu L, Urban VS, Collins AM, Biswas P, Blankenship RE (2011) Temperature and ionic strength effects on the chlorosome light-harvesting antenna complex. Langmuir 27:4816–4828

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Camacho R, Thomsson D, Reus M, Holzwarth AR, Scheblykin IG (2011) Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. J Am Chem Soc 133:17192–17199

    Article  PubMed  CAS  Google Scholar 

  • Tvermyr M, Kristiansen BE, Kristensen T (1998) Cloning, sequence analysis and expression in E. coli of the DNA polymerase I gene from Chloroflexus aurantiacus, a green nonsulfur eubacterium. Genet Anal Biomol Eng 14:75–83

    Article  CAS  Google Scholar 

  • van Noort PI, Zhu Y, LoBrutto R, Blankenship RE (1997) Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J 72:316–325

    Article  PubMed  Google Scholar 

  • Vermeer AW, Norde W (2000) The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78:394–404

    Article  PubMed  CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    Article  CAS  Google Scholar 

  • Wang J, Brune DC, Blankenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015:457–463

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Harada J, Buyle K, Yuan K, Tamiaki H, Oh-Oka H, Loomis RA, Blankenship RE (2010) Characterization of an FMO variant of Chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol. Biochemistry 49:5455–5463

    Article  PubMed  CAS  Google Scholar 

  • Worathanakul P, Jiang J, Biswas P, Kongkachuichay P (2008) Quench-ring assisted flame synthesis of SiO2-TiO2 nanostructured composite. J Nanosci Nanotechnol 8:6253–6259

    Article  PubMed  CAS  Google Scholar 

  • Zupcanova A, Arellano JB, Bina D, Kopecky J, Psencik J, Vacha F (2008) The length of esterifying alcohol affects the aggregation properties of chlorosomal bacteriochlorophylls. Photochem Photobiol 84:1187–1194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Joseph K.-H. Tang thanks Professor Herbert van Amerongen at Wageningen University, Netherlands, and Professor Jakub Pšenčík at Charles University, Czech Republic, for the discussions of CD data, Professor C. Robert Mathew and Dr. Sagar V. Kathuria at the University of Massachusetts Medical School for the access of their CD spectrometry, and Professor Gang Han at the University of Massachusetts Medical School for the access of his dynamic light scattering instrument. This work is supported by start-up funds and faculty development fund from Clark University to Joseph K.-H. Tang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Kuo-Hsiang Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J.KH., Xu, Y., Muhlmann, G.M. et al. Temperature shift effect on the Chlorobaculum tepidum chlorosomes. Photosynth Res 115, 23–41 (2013). https://doi.org/10.1007/s11120-013-9800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9800-y

Keywords

Navigation