Skip to main content
Log in

The D1 and D2 proteins of dinoflagellates: unusually accumulated mutations which influence on PSII photoreaction

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Plastid encoded genes of the dinoflagellates are rapidly evolving and most divergent. The importance of unusually accumulated mutations on structure of PSII core protein and photosynthetic function was examined in the dinoflagellates, Symbiodinium sp. and Alexandrium tamarense. Full-length cDNA sequences of psbA (D1 protein) and psbD (D2 protein) were obtained and compared with the other oxygen-evolving photoautotrophs. Twenty-three amino acid positions (7%) for the D1 protein and 34 positions (10%) for the D2 were mutated in the dinoflagellates, although amino acid residues at these positions were conserved in cyanobacteria, the other algae, and plant. Many mutations were likely to distribute in the N-terminus and the D–E interhelical loop of the D1 protein and helix B of D2 protein, while the remaining regions were well conserved. The different structural properties in these mutated regions were supported by hydropathy profiles. The chlorophyll fluorescence kinetics of the dinoflagellates was compared with Synechocystis sp. PCC6803 in relation to the altered protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a. a.:

Amino acid

cDNA:

DNA complementary to RNA

Chl:

Chlorophyll

C-terminus:

Carboxyl terminus

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

F V :

Variable fluorescence

F M :

Maximum fluorescence

N-terminus:

Amino terminus

PSII:

Photosystem II

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

References

  • Adam Z, Zaltsman A, Sinvany-Villalobo G, Sakamoto W (2005) FtsH protease in chloroplasts and cyanobacteria. Physiol Plant 123:386–390. doi:10.1111/j.1399-3054.2004.00436.x

    Article  CAS  Google Scholar 

  • Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Res 76:343–370. doi:10.1023/A:1024969518145

    Article  PubMed  CAS  Google Scholar 

  • Allahverdiyeva Y, Deák Z, Szilárd A, Diner BA, Nixon PJ, Vass I (2004) The function of D1-H332 in photosystem II electron transport studied by thermoluminescence and chlorophyll fluorescence in site-directed mutants of Synechocystis sp. 6803. Eur J Biochem 271:3523–3532. doi:10.1111/j.0014-2956.2004.04287.x

    Article  PubMed  CAS  Google Scholar 

  • Bachvaroff TR, Sanchez-Puerta MV, Delwiche CF (2006) Rate variation as a function of gene origin in plastid-derived genes of peridinin-containing dinoflagellates. J Mol Evol 62:42–52. doi:10.1007/s00239-004-0365-4

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2005) The catalytic manganese cluster: protein ligation. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 261–284

    Google Scholar 

  • Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503:147–163. doi:10.1016/S0005-2728(00)00220-6

    Article  PubMed  CAS  Google Scholar 

  • Dodge JD (1987) Dinoflagellate ultrastructure and complex organelles: A. General ultrastructure. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publication, Oxford, pp 93–118

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Golden S (1994) Light-responsive gene expression and the biochemistry of the photosystem II reaction center. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 693–714

    Google Scholar 

  • Green BR (2004) The chloroplast genome of dinoflagellates—a reduced instruction set? Protist 155:23–31. doi:10.1078/1434461000161

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BM, Gaba V, Matto AK, Edelman M (1987) Identification of a primary in vivo degradation product of rapidly-turning-over 32 kd protein of photosystem II. EMBO J 6:2865–2869

    PubMed  CAS  Google Scholar 

  • Howe CJ, Nisbet RER, Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:1035–1045. doi:10.1093/jxb/erm292

    Article  PubMed  CAS  Google Scholar 

  • Ivleva NB, Shestakov SV, Pakrasi HB (2000) The carboxyl-terminal extension of the precursor D1 protein of photosystem II is required for optimal photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 124:1403–1411. doi:10.1104/pp.124.3.1403

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H (1961) The life-cycle of Porphyra tenera in vitro. Biol Bull 121:173–187. doi:10.2307/1539469

    Article  Google Scholar 

  • Jones R (2005) The ecotoxicological effects of photosystem II herbicides on corals. Mar Pollut Bull 51:495–506. doi:10.1016/j.marpolbul.2005.06.027

    Article  PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Zouni A, Saenger W, Irrgang K-D, Biesiadka J (2005) Cyanobacterial photosystem II at 3.2 Å resolution—the plastoquinone binding pockets. Photosynth Res 84:153–159. doi:10.1007/s11120-004-7077-x

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Mizusawa N, Yamanari T, Ishii A, Ono T (2005) Structural changes of D1 C-terminal α-carboxylate during S-state cycling in photosynthetic oxygen evolution. J Biol Chem 280:2078–2083. doi:10.1074/jbc.M410627200

    Article  PubMed  CAS  Google Scholar 

  • Kobiyama A, Ikeda Y, Koike K, Ogata T (2006) Isolation of a differentially expressed gene in separate mating types of the dinoflagellate Alexandrium tamarense. Eur J Phycol 42:183–190. doi:10.1080/09670260601092364

    Article  Google Scholar 

  • Komenda J, Tichý M, Prášil O, Knoppová J, Kuviková S (2007) The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell 19:2839–2854. doi:10.1105/tpc.107.053868

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. doi:10.1016/0022-2836(82)90515-0

    Article  PubMed  CAS  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Anderson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nixon PJ, Trost JT, Diner BA (1992) Role of the carboxyl terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 31:10859–10871. doi:10.1021/bi00159a029

    Article  PubMed  CAS  Google Scholar 

  • Nixon PJ, Sarcina M, Diner BA (2005) The D1 and D2 core proteins. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 71–93

    Google Scholar 

  • Nomaru E (2005) Analyses of strobilation in Cassiopea sp. carrying controlled number of symbionts. Master degree thesis, Graduate School of Science and Technology, Kobe University (in Japanese)

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–11. doi:10.1046/j.1529-8817.2003.02185.x

    Article  CAS  Google Scholar 

  • Petrouleas V, Crofts AR (2005) The iron-quinone acceptor complex. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 177–206

    Google Scholar 

  • Prézelin B (1987) Photosynthetic physiology of dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publication, Oxford, pp 174–223

    Google Scholar 

  • Satoh K (1998) Creation of photo-tolerant mutants of a cyanobacterium, Synechocystis sp. PCC 6803, by in vitro random mutagenesis of the psbA gene. In: Satoh K, Murata N (eds) Stress responses of photosynthetic organisms. Elsevier Science, Amsterdam, pp 3–14

    Google Scholar 

  • Satoh K, Yamamoto Y (2007) The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center. Photosynth Res 94:203–215. doi:10.1007/s11120-007-9191-z

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Wydrzynski TJ, Govindjee (2005) Introduction to photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 11–22

    Google Scholar 

  • Takahashi S, Whitney S, Maruyama T, Badger M (2008) Heat stress causes inhibition of the de novo of antenna proteins and photobleaching in cultured Symbiodinium. Proc Natl Acad Sci USA 105:4203–4208. doi:10.1073/pnas.0708554105

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Uchida A (1999) Molecular cloning and nucleotide sequence analysis of psbA from the dinoflagellates: origin of the dinoflagellate plastid. Phycol Res 47:207–216. doi:10.1111/j.1440-1835.1999.tb00300.x

    Article  CAS  Google Scholar 

  • Takishita K, Nakano K, Uchida A (1999) Preliminary phylogenetic analysis of plastid-encoded genes from an anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta). Phycol Res 47:257–262. doi:10.1111/j.1440-1835.1999.tb00306.x

    Article  Google Scholar 

  • Taylor FJR (1987) General group characteristics; special features of interest; short history of dinoflagellate study. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publication, Oxford, pp 1–23

    Google Scholar 

  • Wang Y, Morse D (2006) Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucleic Acids Res 34:613–619. doi:10.1093/nar/gkj438

    Article  PubMed  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012. doi:10.1073/pnas.96.14.8007

    Article  PubMed  CAS  Google Scholar 

  • Zauner S, Greilinger D, Laatsch T, Kowallik KV, Maier U-G (2004) Substitutional editing of transcripts from genes of cyanobacterial origin in the dinoflagellate Ceratium horridum. FEBS Lett 577:535–538. doi:10.1016/j.febslet.2004.10.060

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51:26–40

    PubMed  CAS  Google Scholar 

  • Zouni A (2008) From cell growth to the 3.0 Å resolution crystal structure of cyanobacterial photosystem II. In: Renger G (ed) Primary processes of photosynthesis, part 2. RSC Publishing, Cambridge, pp 193–236

    Google Scholar 

Download references

Acknowledgments

We thank Drs. M. Mimuro and T. Tomo (Kyoto University) for the permission to use Dual-Modulation Kinetic Fluorometer and Ms. H. Uchida (Kobe University) for preparation of figure illustrations. We also appreciate Research Center for Environmental Genomics (Kobe University) for assistance in DNA sequencing. Present work was supported by a Grant-in-Aid for Creative Scientific Research from the Japan Society for the Promotion of Science to A.M. (No. 17GS0314) and a Kurita Water and Environment Foundation Grant to S.I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Murakami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iida, S., Kobiyama, A., Ogata, T. et al. The D1 and D2 proteins of dinoflagellates: unusually accumulated mutations which influence on PSII photoreaction. Photosynth Res 98, 415–425 (2008). https://doi.org/10.1007/s11120-008-9378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9378-y

Keywords

Navigation